
vFair: Latency-Aware Fair Storage Scheduling
via Per-IO Cost-Based Differentiation

Hui Lu†, Brendan Saltaformaggio†, Ramana Kompella†‡ ∗, Dongyan Xu†

†Department of Computer Science, Purdue University, ‡Google Inc.

Abstract
In virtualized data centers, multiple VMs are consolidated
to access a shared storage system. Effective storage resource
management, however, turns out to be challenging, as VM
workloads exhibit various IO patterns and diverse loads. To
multiplex the underlying hardware resources among VMs,
providing fairness and isolation while maintaining high re-
source utilization becomes imperative for effective storage
resource management. Existing schedulers such as Linux
CFQ or SFQ can provide some fairness, but it has been ob-
served that synchronous IO tends to lose fair shares signifi-
cantly when competing with aggressive VMs.

In this paper, we introduce vFair, a novel scheduling
framework that achieves IO resource sharing fairness among
VMs, regardless of their IO patterns and workloads. The de-
sign of vFair takes per-IO cost into consideration and strikes
a balance between fairness and storage resource utilization.
We have developed a Xen-based prototype of vFair and eval-
uated it with a wide range of storage workloads. Our re-
sults from both micro-benchmarks and real-world applica-
tions demonstrate the effectiveness of vFair, with signifi-
cantly improved fairness and high resource utilization.

Categories and Subject Descriptors D.4.4 [Operating Sys-
tems]: Communications Management—Input/Output

General Terms Design, Measurement, Performance

Keywords Virtualization, Cloud Computing, Scheduling,
I/O

∗Contributed to the work while at Purdue University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’15, August 27-29, 2015, Kohala Coast, HI, USA.
c© 2015 ACM. ISBN 978-1-4503-3651-2/15/08. . . $15.00.

DOI:http://dx.doi.org/10.1145/2806777.2806943

1. Introduction
Virtualization-based server consolidation has become a
common practice in today’s cloud data centers. Sharing
physical hardware among many virtual machines (VMs) of-
fers several benefits such as improved utilization (hence,
better return-on-investment) and agility in resource provi-
sioning required for modern applications. Further, typical
cloud data centers rely on a high degree of resource shar-
ing (e.g., 40 VMs/physical server [13]), which is critically
hinged on providing isolation as well as fairness in resource
allocation across individual VMs.

Resource sharing in virtualized cloud environments is
largely based on proportional sharing. For instance, sev-
eral existing schedulers [19, 21, 35] focus on proportionally
sharing available storage IO resources via allocations of IO
throughput (bytes/s), IOPS (IO operations/s), or IO queue
depth, and are typically work-conserving in nature.

On the surface, all of these approaches appear to provide
fair access to storage resources. Indeed, as long as contend-
ing VM workloads exhibit high IO-concurrency (e.g., when
IO requests are asynchronous in nature), such schedulers
can provide reasonable fairness across VMs. However, if a
VM’s workload exhibits low IO-concurrency (e.g., Web or
database servers with synchronous IO requests), the work-
conserving property can cause synchronous requests to be
arbitrarily delayed by interleaved batches of asynchronous
IO requests from competing VMs — thereby causing sig-
nificant unfairness. This situation becomes worse as asyn-
chronous workloads become more aggressive either with
increased IO-concurrency and/or IO-size. In public clouds,
malicious VMs can even exploit this fact to starve other VMs
with synchronous IO workloads.

One possible mitigation is to provide strict isolation
via reservations and limits [22] or throttling [28]. Unfortu-
nately, static reservations and limits compromise the work-
conserving property, and thus do not fully utilize the avail-
able resources. Even ignoring the low utilization, it is not
clear how to set correct reservations and limits, as perfor-
mance is dependent on several confounding factors such
as whether the IO accesses are sequential or random, syn-
chronous or asynchronous.

 125

To overcome these challenges we present vFair, a novel
block-level proportional share scheduling framework. vFair
aims to provide both strict proportional sharing of storage
IO among multiple VMs and high storage utilization, re-
gardless of IO patterns (asynchronous, synchronous, or a hy-
brid). The design of vFair is based on the following key idea:
Intuitively, each VM’s workload can be modeled as an IO
pattern (i.e., combinations of read/write, sequential/random,
synchronous/asynchronous). Further, given a particular IO
pattern, we can calculate the saturation throughput Pi which
would fully utilize the storage subsystem. Essentially, Pi rep-
resents the storage system’s upper bound on the throughput
of a distinct IO pattern regardless of whether the VM’s work-
load can reach this throughput. Thus, if we know the Pi for
each VM’s IO pattern, it makes intuitive sense to allocate
storage resources based on their Pi and proportional share
percentages (i.e., each VM receives a portion of its theoreti-
cal peak isolation throughput).

For example, consider two VMs with saturation through-
puts P1 and P2 in isolation on a given storage device. By as-
signing 50% : 50% shares, the VMs should ideally receive
P1/2 and P2/2 throughputs respectively when sharing the
same storage device. More generally, vFair defines fair al-
locations as a guaranteed portion of each VM’s Pi based on
their share percentages (in Equation 2).

While the above objective makes conceptual sense, en-
forcing such sharing fairness is not easy in practice. We can-
not know Pi a priori for each VM, and in fact Pi changes
continuously depending on the VM’s workload. This is pre-
cisely why existing schedulers employ indirect metrics such
as IOPS and IO throughput, which unfortunately do not
work for all workloads as discussed before. vFair solves this
by defining a practical per-IO cost allocation model based
on a VM’s observed IO pattern. vFair builds each IO pat-
tern from several basic IO types (e.g., sequential/random;
reads/writes) and uses a simple approximation function to
estimate the saturation throughput (Pi) for combinations of
these IO types. Based on such a baseline model, vFair ap-
proximates the “ideal” fairness share target for each VM, and
then at runtime vFair uses an adaptive feedback controller to
dynamically adjust the model based on system utilization.
Further, vFair ensures isolation for each VM’s IO requests
— preventing performance interference. To accomplish this,
vFair uses a credit-based rate controller to regulate incoming
IO requests to meet the predefined IO allocation. vFair then
uses a fair queuing scheduler for scheduling the admitted IOs
from different VMs.

To the best of our knowledge, vFair is among the first to
explicitly consider saturation throughput for individual VMs
to ensure fair sharing and high utilization of the storage sub-
system. We have implemented a full vFair prototype in the
driver domain of Xen, with portability to other hypervisors.
Our evaluation with application benchmarks and real-world
workloads shows that vFair significantly improves fairness.

For instance, we will show that, compared to CFQ [3], vFair
can improve fairness of storage IO scheduling by an order
of magnitude (e.g., the normalized proportional share ratio
increases from 0.03 to 0.92 for the Postmark application)
while keeping storage fully utilized.

2. Motivation
2.1 Background
The basic aspects to describe storage access patterns are di-
rection (read or write), location (sequential or random), par-
allelism (synchronous or asynchronous), and block size (I/O
request size). Specifically, storage IO (a read or write op-
eration) is broadly classified as sequential or random. Se-
quential IO is typical of large file reads/writes and involves
operating on one block immediately after its neighbor. Con-
versely, random IO involves large numbers of seeks and ro-
tations (for spinning devices) and is often much slower.

Orthogonally, there are two types of synchronization:
synchronous IO (cannot be backlogged) and asynchronous
IO (can be backlogged). In synchronous IO, a thread starts
an IO operation and enters a wait state until the IO request
has completed — such workloads are said to have “low IO-
concurrency”. While in asynchronous IO, a thread sends an
IO request to the kernel and continues processing another
job, hence “high IO-concurrency”.

IO request size is a generic term to describe the amount of
data an application reads from or writes to a storage device.
Typically, it is more efficient to read fewer large records than
many small ones. However, a large IO request is slower than
a small one due to the device’s data transfer rate.

2.2 Illustration of Unfairness
To illustrate the unfairness incurred by various IO ac-
cess patterns, Figure 1 compares the throughput in terms
of IOPS observed in several experiments. We use two
micro-workloads: Fio [8] issuing synchronous read requests
(simulating low IO-concurrency) and aio-stress [2] issuing
asynchronous random read requests (simulating high IO-
concurrency). We use a single SSD which is more favor-
able to traditional schedulers than HDD as random seeks are
much more expensive on the latter. Both workloads run in
a single thread, each with the same share weight — Ideally,
they should obtain nearly the same throughput in a fair share
manner.

In Figure 1(a), we fix the IO request size for both work-
loads (4 KB) and only vary the outstanding IO (OIO) num-
ber of the asynchronous workload from 1 to 32 (i.e., in-
creasing the IO concurrency). Intuitively, the OIO number
of the synchronous workload is always 1. The workloads
are run on native Linux with the default CFQ time-slice
based (non-work-conserving) IO scheduler — the “antic-
ipating” scheduler (i.e., adds idle time at the end of the
synchronous IO) favors synchronous requests. Figure 1(a)
shows that, as the OIO number of the asynchronous work-

 126

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

Async OIO = 1 Async OIO = 8 Async OIO = 32

IO
P

S
 (

co
u

n
�

n
g

 u
n

it
 =

 4
K

B
)

4 KB Synchronous

Sequen�al Read (OIO=1)

4 KB Asynchronous

Random Read

(a) Varying IO concurrency (OIO #).

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

Async IO size =

4 KB

Async IO size =

32 KB

Async IO size =

128 KB

IO
P

S
 (

co
u

n
�

n
g

 u
n

it
 =

 4
K

B
)

4 KB Synchronous

Sequen�al Read (OIO=1)

Asynchronous Random

Read (OIO=8)

(b) Varying IO size.

0.E+00

2.E+04

4.E+04

6.E+04

Na�ve Virtualiza�on

(no-sched)

Virtualiza�on

(sched)

IO
P

S
 (

co
u

n
�

n
g

 u
n

it
 =

 4
K

B
)

4 KB Synchronous

Sequen�al Read (OIO=1)
32 KB Asynchronous

Random Read (OIO = 8)

(c) Native vs virtualization setup.

Figure 1. IO performance unfairness due to various IO parameters. As IO concurrency (a) or IO size (b) increases, asyn-
chronous workloads dominate synchronous workloads. Further, virtualization compounds the unfairness (c).
load increases, the throughput of the synchronous workload
degrades significantly from ∼5,000 to less than 100 IOPS.
In contrast, the throughput of the asynchronous workload in-
creases from ∼5,000 to ∼28,730. This clearly indicates that
as asynchronous workloads become more aggressive (i.e.,
with larger OIO) the synchronous workloads receive increas-
ingly unfair service times.

In Figure 1(b), using the same system setup as before,
we instead fix the IO concurrency (8 for the asynchronous
workload) and only vary the IO size of the asynchronous
workload from 4 KB to 128 KB. Again, because syn-
chronous workloads wait for the previous request to com-
plete, the synchronous workload’s OIO is always 1. These
results show that as the IO size of the asynchronous work-
load increases, the throughput of the synchronous work-
load subsequently degrades from ∼2,400 to ∼200. In sharp
contrast, the throughput of the asynchronous workload in-
creases from ∼16,200 to ∼59,360. This indicates that even
non-aggressive asynchronous workloads with large request
sizes can cause synchronous workloads’ throughput to suf-
fer. Note that, although CFQ fairly allocates time slices be-
tween the synchronous queue and the asynchronous queue
[3], it still cannot guarantee both queues obtain the same
storage service time resulting in unfairness.

Figure 1(c) shows the impact of only virtualization over-
head when we fix both the OIO number and IO size. Three
basic scenarios are compared: (1) the native non-virtualized
case, (2) the virtualized case without CPU scheduling im-
pact, and (3) with CPU scheduling impact (the most typi-
cal scenario in practice [38]). In the virtualized experiments,
we run the workloads in 2 VMs separately, with the same
configurations as the native case. For the case without CPU
scheduling impact, we pin each vCPU to a dedicated pCPU,
while for the case with scheduling impact we let all vCPUs
share all available pCPUs. Figure 1(c) shows that virtualiza-
tion overhead further penalizes synchronous workloads. The
synchronous workload achieves 20% and 30% fewer IOPS
compared to the native synchronous workload without and
with scheduling impact, respectively. On the contrary, the
asynchronous workload receives more IOPS compared to the
native one. Further, as more VMs compete for the pCPUs the
throughput penalty for the synchronous workloads will be-
come even more significant.

2.3 Investigating the Cause of Unfairness
Next, we take a deeper look into the cause of unfairness
in Figure 2. Here we consider two VMs sharing the same
storage device — VM1 issuing synchronous IO requests
and VM2 issuing asynchronous requests. Since the IO re-
quests from VM1 are synchronous (i.e., requests come one
by one), the arrival of each request, reqi+1, is delayed by
the processing time of the preceding request, reqi. Note that
this processing time, t(reqi), includes the amounts of time
t1(reqi), consumed across the software IO stack (e.g., guest
IO subsystem, kernel IO subsystem, IO scheduler, etc.), and
t2(reqi) the latency at the device (e.g., HDD, SSD, RAID
or the virtualized software devices). On the other hand, the
arrival of asynchronous IO requests from VM2 are not de-
layed since the thread(s) may continue to work. Hence, the
asynchronous requests accumulate much faster than the syn-
chronous requests in the IO scheduler’s request queues.

Work-conserving schedulers (e.g., FCFS, deadline, and
SFQ(D)) are idle only when there is no IO traffic to send.
Such schedulers frequently switch to process the asyn-
chronous requests during the deceptive idleness period1

of the synchronous requests. Interestingly, we observe that
t2(reqi) is proportional to t1(reqi). Specifically, as the value
of t1(reqi) increases, more asynchronous requests are dis-
patched to the storage devices by the work-conserving
scheduler, causing increased delays in the processing time
of the synchronous requests (i.e., t2(reqi)). In consequence,
the work-conserving property causes VM1 to issue requests
at a deceptively low rate. This causes the arrival of a syn-
chronous request to be arbitrarily delayed by a batch of
asynchronous IO requests from competing VMs.

Even with non-work-conserving schedulers (e.g., CFQ [3]
and other anticipatory schedulers) that allow for idle time at
the end of each synchronous IO in anticipation of subse-
quent requests, this unfairness will still occur when t1(reqi)
+ t2(reqi) is larger than the idle time (which cannot be set
too large for storage efficiency). Yet t1(reqi) may become
arbitrarily large due to additional latency incurred by: (1)
the virtualized IO stack in the guest and (2) scheduling con-
tention at the hypervisor — worsening the delay situation.

1 A condition where work-conserving schedulers incorrectly assume that
the last request issuing process has no further requests.

 127

VM1

Driver domain

IO subsystem

Guest

IO subsystem
IO scheduler

Shared storage

devices

VM2

VM1

VM2

VM2

VM2

VM1

Latency in

IO stack

Latency in

storage

VM2

Synchronous IO requests Asynchronous IO requests

Dispatch IOs

ACKACKACK

Time

Dispatch IOs

ACKACKACK

…

Figure 2. An illustration of unfairness.
The latency from (1) is well known and has been optimized
with every new version of a hypervisor, but beyond a certain
point this cannot be further reduced. Typically, the virtual-
ized IO stack (KVM [11]) adds 10% more overhead than
native. Latency from (2) was observed in related work [37]
to be on the order of tens of milliseconds, depending on the
CPU quantum allocated to individual VMs. This cannot be
easily avoided as long as CPU cores are shared across VMs.

To sum up, the unfairness problem is mainly due to two
factors. (1) Existing IO schedulers do not take various
IO access patterns into account. Yet as our observations in
Figure 1 show, the resource costs of different IO access pat-
terns diverge dramatically and cause unfair sharing. Further,
simply using IOPS (as most proportional share schedulers
do) to divide up storage service time hardly guarantees re-
source fair allocation among multiple VMs. For example, to
distinguish IO requests with different sizes, Amazon EC2 [7]
designates a reference IO size of 256 KB — IO with a dif-
ferent size is counted in 256 KB capacity units (e.g., a 1024
KB IO request counts as 4 IOPS). Such a method is far from
sufficient, as other characteristics (i.e., synchronous, asyn-
chronous, random, sequential, etc.) are also important fac-
tors in determining IO cost. (2) Non-work-conserving IO
schedulers become less effective in virtualized cloud envi-
ronments. In particular, the IO latency under virtualization
is much larger than that in native. As a result, the idle time
added by the non-work-conserving scheduler (e.g., CFQ)
would further hurt overall storage efficiency; such idle time
will be wasted if the interval of two continuous synchronous
IOs is larger than the idle time. In Section 4, we will show
how vFair overcomes the unfairness problem while keeping
high efficiency of the overall storage system.
3. Related Work
Proportional Share Fair queuing algorithms have previ-
ously been applied to storage IO constraints [1, 3, 16, 20, 21,
27, 29]. Most of these focus on a single resource metric such
as IO throughput (bytes/s), IOPS (IO operations/s), or array
queue length, and provide mechanisms to fairly allocate ac-
cording to that metric. However, this relatively simple allo-
cation mechanism cannot guarantee fair allocation in terms
of storage service time. Current service time based propor-
tional share schedulers treat IO response time as an approxi-

mation [19]. These approaches are too coarse-grained as re-
sponse time will diverge from service time when the array
has large queue depths. The rewarding scheduler [18] adopts
a dynamic share allocation to reward clients that efficiently
use storage resources. However, due to the delay problem
discussed in Section 2.3, the rewarded shares do not bene-
fit synchronous workloads. In contrast, vFair contributes a
novel fine-grained service time based allocation to achieve
fairer resource sharing.
Reservation and limitation Control groups (cgroups) [4]
sets resource limits for a number of resources including IO
bandwidth. Further, mClock [22] uses reservation and limit
controls for shared storage to mitigate interference between
workloads, and thus may protect the performance of sequen-
tial workloads. However, the static allocation method re-
quires allocations of absolute VM service rates and are not
flexible enough for a pure proportional fair share scheduler.
In addition, mClock applies “worst case IOPS” as an up-
per bound, which is reasonable in reservation; but the non-
work-conserving nature of mClock causes the storage ca-
pacity to not always be fully utilized. vFair shows up to 85%
throughput improvement for low IO-concurrency workloads
with better proportional share ratio and high utilization.

To isolate sequential IOs from random IOs, time-quanta-
based IO allocations have been proposed [35, 36]. However,
because of latency jitter, workloads must wait for others to
finish their quantum before each time slice. Further, time-
quanta based allocations are not work-conserving. Other
workload placement methods [17, 30, 34] avoid IO inter-
ference by scheduling competing VMs on different servers.
DRF [24] introduces a generalization of max-min fairness to
multiple resource types. By applying DRF, Pisces [34] pro-
vides per-tenant fairness and isolation for key-value storage,
including partition placement, weight allocation, replica se-
lection, and weighted fair queuing. Libra [33], a multi-tenant
IO scheduler, further provides application-request through-
put reservations while preserving high-utilization for SSD-
based key-value storage. To complement these high-level,
object-based solutions, vFair focuses on block-level storage
scheduling that operates at a lower level of the storage soft-
ware stack.
IO path improvements The IO latency brought by the vir-
tualized IO stack has been reduced via several software tech-
niques, such as para-virtualization and skipping the guest-
level IO scheduler, but this latency is still non-trivial com-
pared to the native scenario. vTurbo [37] accelerates IO pro-
cessing for VMs by offloading IO processing to a designated
core. Though such methods reduce VM scheduling delay,
they can hardly eliminate IO scheduling latency in the hy-
pervisor. Vanguard [32] tried to eliminate performance inter-
ference by provisioning VMs with dedicated IO resources.
However, this approach requires SSD devices for caching,
and focuses only on high efficiency. vFair instead optimizes
the IO scheduling for efficiency and fairness, though our so-
lutions are complementary to any of these methods.

 128

Add

Request

IO_Rate Control

Applica�on Queue

IO_Rate Control

Applica�on Queue

IO_Rate Control

Applica�on Queue

…

Dispatch_

Requests

SFQ(D) Dispatch

Device Queue

IO thro�ling or dispatch

CIRC

AFC

Applica�on Queue

Applica�on Queue

Applica�on Queue

…

User mode Kernel mode

(IO resource scheduling)

SFQ(D)

tagging

Alloca�on Model

(Service �me alloca�on)

Figure 3. Architecture of vFair.
4. Design
To overcome the challenges highlighted in Section 2.3,
vFair incorporates two key components, shown in Figure 3.
First, to address the need for fine-grained IO allocation,
we propose a novel service-time based allocation model
(Section 4.1) and a practical way of realizing it using prior
knowledge from an offline performance model and poste-
rior knowledge from the running VMs. Based on this model,
three scheduling strategies are proposed considering both
fairness and efficiency (Section 4.2). Second, to avoid the
limitations of non-work-conserving schedulers, vFair em-
ploys a two-level scheduling architecture (Section 4.3) for
arbitrating IO resources across different VMs based on the
proposed allocation model.
4.1 Per-IO Cost Allocation Model
As demonstrated in Section 2, to fairly allocate storage per-
formance vFair must consider the amount of time each IO re-
quest will need to complete. However, it’s not possible to ac-
curately measure the service time of each IO operation with-
out help from storage vendors, particularly for large storage
arrays with hundreds of IOs concurrently. On the other hand,
simply dividing up the number of IOs across VMs is too
coarse-grained.

Given this challenge, let us first consider the theoretical
IO throughput that a VM could receive in isolation. Intu-
itively, each VM’s workload can be modeled as an IO pattern
(i.e., combinations of read/write, sequential/random, syn-
chronous/asynchronous). Given a particular IO pattern, we
aim to calculate the saturation throughput Pi which would
fully utilize the storage subsystem. In other words, Pi repre-
sents the storage system’s upper bound on the throughput of
a distinct IO pattern.

Therefore, a fair allocation of storage resources for two
equally weighted VMs with saturation performance P1 and
P2 would result in achieving P1/2 and P2/2, respectively.
Intuitively, this allocation strategy will result in each VM
obtaining half utilization of the shared storage; thus over
an interval of time T, VMs 1 and 2 will obtain roughly T/2
service time, over which they would have achieved P1/2 and
P2/2 IOPS, respectively. An example is shown in Figure 4.

Recall that proportional fair share is defined as providing
total storage service (denoted by T) to hosts in proportion to

= 8000

average length = 16 KB

average latency = 10 ms

= 1200

average length = 128 KB

average latency = 10 ms

_alloct = /2 = 4000

_alloct = /2 = 600

VM1

VM2

VM1 VM2

Figure 4. VM1 and VM2 should each obtain 50% of the
shared storage throughput, thus the fair share allocation for
VM1 and VM2 would be 4000 and 600, respectively.
their shares (denoted by wi). Hence the service time alloca-
tion units Ti to VMi can be expressed as:

Ti =
wi

∑k wk
·T (1)

Since Pi is directly related to T (Pi refers to full utilization
which is T), we can proportionally allocate Pi using:

Ti = f (
wi

∑k wk
·Pi) (2)

Here, f is a simple mapping function from the saturation per-
formance P to total service time T allocation. For example,
if we allocate 100 IOPS to one VM and 200 IOPS to another
(assume each IO has the same cost), we correspondingly al-
locate 1 relative unit of service time to the first and 2 relative
units to the other. The function f captures this relationship.
The total storage service T is hard to obtain directly in gen-
eral, mainly confounded by the queue depth with competi-
tive IO requests from various workloads. Our approach, in-
stead, estimates T from distinct Pi for different VMs. Each Pi
is obtained using that VM’s specific IO pattern in isolation,
eliminating the influence of other competitive IO requests in
the storage queue.
4.1.1 Model Approximation
Our Per-IO Cost Allocation Model allows vFair to estimate
the total storage service time T using Pi, however, obtaining
Pi for each VM is still challenging in practice. First, since
Pi depends on the mix of IO types, it differs across VMs.
Further, for the same VM, it also changes continuously,
depending on the characteristics of the workloads.

To overcome this, vFair uses an approximate method to
calculate an initial Pi from prior knowledge (saturation per-
formance profiling done in advance and only once). From
this, vFair builds a model based on four basic IO types: se-
quential read, sequential write, random read, and random
write. As shown in Figure 5, the saturation IOPS curves of
such four basic types over various request sizes remain sta-
ble and can be easily obtained by conducting performance
characteristics using micro-benchmarks [25][29] or a per-
formance model [23]. Note that the performance specifica-
tions of disk arrays in a datacenter/cloud change continu-
ously due to transient connectivity errors: network conges-
tion, equipment malfunction, upgrades, or equipment fatigue

 129

0

5,000

10,000

15,000

20,000

25,000

30,000

0 200 400 600

IO
P

S

IO Request Size

Sequen�al Read

Random Read

Sequen�al Write

Random Write

Figure 5. Saturated IOPS performance vs. IO request sizes
for a single SSD.
from long-term use. But even in the face of such unstable
conditions, a mirco-benchmark test will give a valid Pi. This
is because these errors always exist and should therefore be
considered in Pi. To account for these errors, Pi should be
calculated a few times and averaged within a single profiling
2.

Therefore, given a certain VM, Pi can be calculated from
the four basic IO types by fitting the following linear for-
mula:

1/Pi = α ·β/Pseq rd +α · (1−β)/Prand rd

+(1−α) · γ/Pseq wr

+(1−α) · (1− γ)/Prand wr

(3)

where α is the read ratio of all IO operations, β is the se-
quential read ratio of the total read operations, and γ rep-
resents the sequential write ratio of all write operations.
Pseq rd ,Prand rd ,Pseq wr, and Prand wr refer to the points on the
curves of Figure 5 for a given IO request size. Each item on
the right side of Equation 3 represents the percentage of a
specific IO type. For example, α ·β ·Pi/Pseqrd represents the
percentage of the sequential read IO.

Using Equation 3, vFair can derive Pi for a certain VM
by observing α , β , γ , and average IO sizes. The values for
these parameters are acquired by a sampling of the VM’s IO
access pattern (posterior knowledge). Note that many appli-
cations have time-varying IO patterns. For example during
query processing a database system may initially start with
heavy sequential reads (e.g., during scans), switch to random
writes (e.g., while building hash tables), and then sequen-
tial writes (e.g., writing the results). To account for such dy-
namic behavior, vFair performs periodic parameter updates
using Equation 3 every 30 ms. Additionally, at runtime an
Adaptive Feedback Control (Section 4.3) is used to refine
this estimation closer to the actual throughput dynamically.

Notably, some IO workloads could be very complex in
practice (e.g., with multithreading). Yet, they can be eas-
ily modeled as a specific IO pattern by examining per-VM
IO behavior at the hypervisor level. Multiple synchronous
threads will generate multiple outstanding IOs, and there-
fore behave more similarly to asynchronous IO workloads.

2 In our model, we use the aio-stress micro-benchmark tool inside a na-
tive Linux box to measure raw storage performance and minimize software
latency (e.g., bypassing file systems and IO schedulers). Though data pro-
filing requires up to several hours (with ∼300 sampling points), this offline
profiling (only done once) will not add any overhead to the runtime system.

0.E+00

2.E+03

4.E+03

6.E+03

8.E+03

1.E+04

1.E+04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Read/write ra�o

Actual Perf

3D-Op�mized

2D-Es�mated

(a) 16 KB

0.E+00

5.E+02

1.E+03

2.E+03

2.E+03

3.E+03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Read/write ra�o

Actual Perf
3D-Op�mized
2D-Es�mated

(b) 128 KB

Figure 6. Estimation vs Actual Throughput with IO size of
(a) 16 KB and (b) 128 KB.

For instance, given a 16-thread synchronous workload, there
could be at most 16 outstanding IO requests; given an asyn-
chronous workload with an IO depth of 16, there can be at
most 16 outstanding IO requests as well. For both work-
loads, only when one of the 16 outstanding IO requests com-
pletes, can the next IO request be issued. Since Equation
3 captures the IO pattern of both synchronous and asyn-
chronous workloads using saturation performance, it can
handle multi-threaded workloads naturally. In our evaluation
(Section 5), we choose various multithreaded IO workloads
to test the effectiveness of vFair.

4.1.2 Model Accuracy and Improvement
The effectiveness of vFair’s allocation mechanism closely
depends on the accuracy of the approximation model. To
show the estimation error between the actual throughput and
estimated allocation, we run Sysbench [15] fileio test on a
native Linux system to generate workloads with read per-
centage from 0 to 100% and IO sizes ranging from 16 to 128
KB. For each combination, we measure the actual through-
put (in IOPS) and compare it to the estimated allocation from
Equation 3.

Over all workloads, the sequential cases (both read and
write) produce the minimum estimation error (within 10%),
while the random cases produce estimation errors ranging
from 2% to just over 20%. Figure 6 plots the estimation
errors for sizes of 16 KB and 128 KB, and shows that the
estimation forms a straight line and tends to be above the
actual throughput curve.

To further reduce the estimation error, we introduce an
enhanced model by considering varying read/write ratios in
the offline profiling — instead of only the linear combina-
tion of peak performance reads and writes. We call the origi-
nal estimation model 2D-estimation and the enhanced model
3D-estimation. Accordingly, for Equation 3, instead of using
the percentage of reads/writes, we use the joint distribution
to estimate peak performance in 3D-estimation. As shown in
Figure 6, the average estimation error of 16 KB and 128 KB
reduce from 17% and 26% to 9% and 8%, respectively. In
general, the 3-D estimation curve in Figure 6 follows closely
below the actual throughput curve. We can further increase
the accuracy by varying the sequential ratio in addition to
the read/write ratio. For now, we choose the 3D-estimation
model to obtain a relatively accurate estimated Pi with rea-
sonable offline data profiling.

 130

VM1 VM2

VM1 VM2

… …

1 2 3 4 5 6 7 8

……

2 7 8 1 6 5 3 4

… …

1 3 5 7 9

……

4 2 6 8

= 8000, Sequen�al access = 1200, Random access

1200, Random access

11 13 15 14 16 12 10

Figure 7. The sequential IO of VM1 becomes random when
consecutive accesses are interleaved with those of VM2. As
a result, the saturation performance becomes P1+2 = 1200
(the worst case).

4.2 IO Resource Scheduling Strategy
The Per-IO Cost Allocation Model allocates IO resources
using Pi, and thus provides the ideal goal of both fairness
and storage efficiency. However, in practice vFair must ac-
count for the IO-blender effect [10], where for example two
VMs with sequential IO patterns interleave, resulting in a
random IO pattern and greatly reducing the overall storage
utilization. Due to this, using static Pi to estimate storage
capacity would become imprecise over time. Hence we have
developed three scheduling strategies that vary depending on
the amount of correction they incorporate for the blender ef-
fect. One of these scheduling policies can be specified before
vFair has started running.
Blender-oblivious proportional share (BOPS) The sim-
plest scheme does not take blender effect into account and
only allocates according to the VM’s workload character-
istics. This results in overestimating the Pi values since
sequential reads/writes can become random and random
IOs cost more than sequential, resulting poor throughput.
Figure 7 shows an example in which, due to IO-blender,
VM1 cannot achieve its fair share IOPS (i.e., the half of
P1, 4000, by Equation 2). A naive way to solve this prob-
lem is to use the worst case IOPS as an upper bound for
allocation[22] (e.g., 1200 in Figure 7). However, such a con-
servative method is not efficient and cannot fully utilize the
capacity of the underlying storage devices. For empirical
comparison, we include BOPS as a candidate algorithm.
Blender-aware proportional share (BAPS) To solve the
inaccuracy in BOPS, we propose adjusting the allocations
on the fly. Given a VMi with IO pattern t without blender
and IO pattern t ′ with blender, the capacity change can be
calculated by Pi−P′i . By summing all the weighted changes,
we obtain the overall capacity change�P. The allocation of
each VM should be adjusted (deducted) by the correspond-
ing weighted �P. By doing so, the penalty brought by the
IO-blender distributes to every VM.

For the example in Figure 7, assume the IO-blender con-
verts all of VM1’s sequential IO to random IO. According
to BAPS, we first calculate �P as an 85% reduction —
4000 IOPS promised to VM1 (VM1 and VM2 are equally
weighted) reduces to 600 IOPS after the blending and no
IOPS change for VM2. Subsequently, we reduce the VMs’

allocations by 85%/2 and allocate 2300 IOPS to VM1 and
345 IOPS to VM2.

Of course, since the overall IOPS will reduce to 1200 in
the worst case, BAPS may only achieve 855 IOPS for VM1
and 345 IOPS for VM2. In the general case though, BAPS
ensures that VM1 receives between 855 to 4000 IOPS de-
pending on the severity of the blender effect’s interleaving.
Regardless, by scheduling more IOPS for VM1, the storage
system is better utilized and the performance penalty caused
by IO-blender distributes to both VMs instead of only those
with sequential IO patterns.
Blender-aware strict proportional share (BSPS) While
BAPS adjusts for performance loss due to blender effect, to
ensure a strict proportional fair share, we must also guaran-
tee P′1/P′2 = (w1 ·P1)/(w2 ·P2)(w1 and w2 are the weights of
VM1 and VM2). To this end, we propose BSPS to provide
the best fairness guarantees at the cost of perhaps less effi-
cient utilization of storage throughput.

BSPS adjusts the VMs’ IO allocation until P′1/P′2 = (w1 ·
P1)/(w2 ·P2) or the storage system becomes idle. Intuitively,
the reasons a VM cannot achieve its allocated shares are
due to idleness or IO competition. In consequence, the main
challenge to implement BSPS is identifying which is the
real cause. BSPS uses the per-VM average IO latency, from
dispatching to the storage to completion of the IO request,
as the indicator. Specifically, if the average IO latency is less
or around ∑k wk

wi·Pi
(i.e., latency calculated from Equation 2),

the storage is able to serve such a VM well (i.e., this VM
is idle), and vice versa. We fractionally adjust the non-idle
VMs, whose average IO latency is larger than ∑k wk

wi·Pi
, from

the VM with the relatively largest IO allocation (converting
to the standard size), until P1/P2 = P′1/P′2.

For the two-VM example in Figure 7, BSPS will result
in allocating roughly 8000/9200 ∗ 1200 IOPS for VM1 and
1200/9200 ∗1200 IOPS to VM2, thus being fair even in the
worst case. However, by admitting far fewer sequential IOs
for VM1 to avoid blender effect changes to the proportional
fair share equation, we may drive the storage system sub-
optimally, which is a reasonable tradeoff.

In Figure 8, we compare these scheduling strategies us-
ing a representative example: VM1 performing 16 KB se-
quential read, VM2 and VM3 performing 64 KB and 128
KB random IOs (60% read) on both SSD and HDD. We ob-
serve that, compared with BOPS, BAPS produces slightly
higher throughput for VM1 and lower throughput for VM2
and VM3. BSPS brings more throughput benefit to VM1,
since it reduces the shares of VM2 and VM3 resulting in
less intensive competition of the shared storage. Specifically,
in Figure 8(b), for the HDD case, the throughput of VM1
using BOPS, 448 IOPS, is lower than that of BAPS, 540
IOPS; whereas, with BSPS it reaches 1440 IOPS. On the
other hand, in Figure 8(b), with BSPS VM2 and VM3 ob-
tain 32 and 30 IOPS respectively; with BOPS the IOPS for
VM2 and VM3 are 47 and 55 IOPS; while with BAPS they

 131

0

400

800

1200

1600

2000

BOPS BAPS BSPS

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

VM1(16K) -SEQ

VM2(64K) -RAND

VM3(128K) -RAND

(a) SSD

0

400

800

1200

1600

BOPS BAPS BSPS

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

VM1(16K) -SEQ

VM2(64K) -RAND

VM3(128K) -RAND

(b) HDD

Figure 8. IOPS throughput of three scheduling schemes (a)
for single SSD and (b) for single HDD.
are 47 and 44 IOPS. In addition, the storage system utiliza-
tion (measured from the Linux kernel) is close to 100% using
BAPS, and around 90% using BSPS. We observe a similar
trend in Figure 8(a) using the SSD.

Table 1 summarizes the comparisons of different schedul-
ing schemes. BSPS ensures the best fairness guarantees, but
in most scenarios the IO scheduler desires high efficiency
with best-effort fairness guarantees. Thus, we choose BAPS
as the default algorithm for vFair for the rest of the paper.

Scheduling Fairness Work- High
Strategy Guarantee conserving? Utilization?
BOPS(vFair) Good Yes Yes
BAPS(vFair) Better Yes Yes
BSPS(vFair) Best Yes No
PS(mClock) Good Yes Yes
CFQ(Linux) Bad No No
Time-Quanta Best No No
based scheduler

Table 1. Scheduling strategy comparison.

4.3 Two-level Scheduling Architecture
To realize the Per-IO Cost Allocation Model and scheduling
strategies, vFair employs a traditional two-level scheduling
architecture. This consists of a credit-based IO rate con-
troller (CIRC), responsible for regulating incoming traffic
to meet the rate requirement and ensuring isolation be-
tween VMs, and a fair queuing scheduler, for achieving fair
scheduling among the isolated classes provided by CIRC.
Though we could adjust the tag in SFQ(D) (i.e., work-
conserving) to perform credit allocation and accumulation, it
is still necessary to use a throttling-based scheduler to throt-
tle aggressive VMs and thus leave the desired time slices for
other VMs (e.g., with synchronous IOs).

We propose a simple credit-based IO rate controller
(CIRC) inspired by Xen’s CPU Credit Scheduler. An IO
credit amount is assigned to an active VM’s IO queue peri-
odically depending on the allocation model and IO schedul-
ing strategies. VMs burn one credit every time they receive
one IO request from applications and become throttled when
there is no remaining credit.

To handle bursts, CIRC adopts a reset mechanism: if an
active VM does not use its fair share, it will slowly accu-
mulate credits. Once it reaches a threshold, it is marked as

inactive and the credits are dropped (set to zero). This VM
will be re-activated by a new IO request and marked as burst,
which has a chance to schedule requests in bursts (up to the
bursty threshold). By adjusting the bursty threshold, CIRC
easily regulates the bursty degree and minimizes the bursty
impact to other workloads. To keep work-conserving, CIRC
collects unused credits from “under VMs” (unable to con-
sume all credits) and distributes them proportionally to “over
VMs” (consumed all credits) to be used during the next
running interval. To reduce fluctuation, a moving average
method is adopted to smooth total unused credits within sev-
eral previous intervals.

In order to guarantee fair interleaving of IO requests, we
use a fair queuing algorithm, SFQ(D) (same algorithm used
in Parda [21]), to achieve second-level fairness. Some two-
level architectures [26, 39] use real-time scheduler latency
goals, but they are unfair (i.e., they do not isolate request
flows from unexpected demand surges) and require admis-
sion control. SFQ(D) assigns tags to each request when it
arrives and dispatches requests in increasing order of the
tags. The fairness property results from the way that tags are
computed and assigned to requests of different workloads.
The tag values represent the time when each request should
start and complete according to a virtual time that advances
monotonically.

To adjust for inaccuracies in our offline performance
model, we employ an adaptive feedback control (AFC)
mechanism, as used in prior work [28]. AFC detects the
state of the storage system based on unused credits Ci from
CIRC and the average system-wide IO latency Li measured
over a fixed time period, and adjusts the estimated Pi for each
VMi correspondingly. A simple exponential moving average
method is used to smooth and reduce variability of Li and Ci.
For lack of space, we do not describe this in further detail;
we use the same algorithm as described in [28].

In many environments, storage can be shared across dif-
ferent hosts — requiring a scheduler that can run in a dis-
tributed fashion. vFair can be extended for these settings
similar to [21]. This involves running vFair on each host and
exchanging fair share information (VM weights and over-
all IO latency), with each other. For our implementation in
Section 5, we used the NFS file system to exchange infor-
mation every 30 ms, but vFair can be extended to use any
other communication mechanism (e.g., TCP).

5. Evaluation
We have implemented a prototype of vFair (∼1500 lines
code) as a Linux 3.2.10 loadable module and integrate it with
the Xen 4.2 hypervisor. However, vFair is easy to port to
other hypervisors (e.g., KVM). In this section we present a
detailed evaluation of vFair, which consists of several hosts
accessing a shared storage system. Each host is equipped
with a quad-core 3.2GHz Intel Xeon CPU, 16GB of RAM,
and connected via two 1Gigabit Ethernet links. These hosts
run a Xen 4.2 hypervisor and Linux 3.2 driver domain and

 132

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair share

vm2 (64k) -- actual perf

vm2 (64k) -- fair share

vm3 (128k) -- actual perf

vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

(a) CFQ(Linux)

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

 10,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair share

vm2 (64k) -- actual perf

vm2 (64k) -- fair share

vm3 (128k) -- actual perf

vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

(b) PS(mClock)

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair share

vm2 (64k) -- actual perf

vm2 (64k) -- fair share

vm3 (128k) -- actual perf

vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

(c) BAPS(vFair)

Figure 9. The less-backlogged case (SSD): throughput (IOPS) distribution among three VMs running workloads with random
IOs with various IO sizes using CFQ(Linux), PS(mClock) and BAPS(vFair).

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair shares

vm2 (64k) -- actual perf

vm2 (64k)-- fair shares

vm3 (128k) -- actual perf

vm3 (128k) -- fair shares

VM1 starts

VM2 starts

VM3 starts

(a) CFQ(Linux)

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair shares

vm2 (64k) -- actual perf

vm2 (64k)-- fair shares

vm3 (128k) -- actual perf

vm3 (128k) -- fair shares
VM1 starts

VM2 starts
VM3 starts

(b) PS(mClock)

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm1 (16k) -- actual perf

vm1 (16k) -- fair shares

vm2 (64k) -- actual perf

vm2 (64k)-- fair shares

vm3 (128k) -- actual perf

vm3 (128k) -- fair shares
VM1 starts

VM2 starts
VM3 starts

(c) BAPS(vFair)

Figure 10. The non-backlogged case (SSD): throughput (IOPS) distribution among three VMs running workloads with
sequential or random IOs with various IO sizes using CFQ(Linux), PS(mClock) and BAPS(vFair).

BAPS(vFair) CFQ(Linux) PS(mClock) Fair shares
vm1 (16k) – 60% random read 48 28 37 51
vm2 (64k) – 60% random read 42 58 46 45
vm3 (128k)– 60% random read 40 48 45 40

Table 2. The less-backlogged case in the three-VM share phases using HDD.
BAPS(vFair) CFQ(Linux) PS(mClock) Fair shares

vm1 (16k) – sequential read 540 190 256 1940
vm2 (64k) – 60% random read 44 51 48 45
vm3 (128k)– 60% random read 41 46 43 40

Table 3. The non-backlogged case in the three-VM share phases using HDD.
guest VMs. Each VM is assigned sufficient resources to en-
sure no performance bottlenecks are due to CPU or memory.
To include scheduling impact, all vCPUs share all available
pCPUs. We have performed our experiments using one 300G
solid-state drive (SSD) and one 1TB hard disk drive (HDD)
separately as the shared storage device.

Three proportional fair share IO schedulers, CFQ (Linux),
PS (mClock) and BAPS(vFair) are compared. CFQ (Linux)
comes from Linux kernel 3.2.10. We implemented mClock’s
proportional share scheduler (as we could not obtain the
source code) according to Algorithm 1 in [22] (not includ-
ing mClock’s limits and reservations). By default, mClock
handles different sized IOs by converting larger IOs into
multiple reference IOs (we use a unit of 16 KB in all ex-
periments). As discussed in Section 2, this technique is too
coarse-grained as the cost of an IO is determined by many
factors, such as sequential/rand, read/write, size, etc. We
choose vFair BAPS over BSPS since it strikes a better trade-
off between storage utilization and fairness. The max queue
depth of vFair is set to be 32.

5.1 Micro-Benchmark Results
In this section, we evaluate the effectiveness of vFair by ex-
amining fairness — whether a VM can achieve its propor-
tional fair shares — and the ability to handle bursty and idle
VMs using the micro-benchmark tool Fio.

5.1.1 Fairness
First, we evaluate the fairness of vFair by demonstrating that
the measured throughput (in terms of IOPS with a system-
wide latency threshold, e.g., 5 ms) meets the proportional
fair shares (as defined in Equation 2) 3.

We launch three VMs with each running the micro-
benchmark Fio without idle time. We use VM1 to emu-
late low IO-concurrency workloads with small IO size (16
KB) and VM2 and VM3 to emulate high IO-concurrency
workloads with large IO size (64 KB and 128 KB). We cat-

3 The ground truth of storage service time should be obtained from the
storage devices. However, such ground truth is hard to measure accurately.
Instead, we use Equation 2 and the 3D-estimation model to approximate the
share target (error is within 10% as shown in Figure 6).

 133

egorize VM1’s IO access patterns into two groups: (1) the
less-backlogged case using asynchronous random IO with
4 concurrent Fio threads and an IO depth of 4; and (2) the
non-backlogged case using synchronous sequential IO with
only 1 Fio thread and the IO depth being 1 (in fact, this is
an extreme case). In contrast, VM2 and VM3 generate asyn-
chronous random IOs (with 8 concurrent Fio threads and IO
depth being 32). According to Section 2, the performance
penalty of the low IO-concurrency workloads in case (2)
should be more severe than case (1).

In each experiment, VM1 is the first to run on the physical
host. Later, we start VM2 to share IO bandwidth with VM1
and finally VM3 is joined. We set equal weights to all VMs.

Less-backlogged case In Figure 9, dotted lines show the
ideal fair share target calculated from Equation 2, while
solid lines depict the actual throughput (measured every 30
seconds). We observe that when three VMs share the same
storage, the throughput of VM1 (the low IO-concurrency
VM with 16 KB size) is only 60 IOPS using CFQ(Linux) and
1224 IOPS using PS(mClock) — far from the target share
2714 IOPS. In contrast, using BAPS(vFair), the average
throughput of VM1 reaches 2721, which is quite close to
the target share. On the other hand, using CFQ(Linux) and
PS(mClock), VM2 and VM3 (the high IO-concurrency VMs
with 64 KB and 128 KB) achieve higher throughput than
their target shares. For example, with CFQ(Linux), VM2 and
VM3 achieve 1568 and 1019 IOPS, higher than the target
1220 and 667 IOPS respectively. While for BAPS(vFair) the
average throughputs of VM2 and VM3 are still close to the
target fair shares. The results in Figure 9 indicate that, both
CFQ(Linux) and PS(mClock) are not fair and favor VMs
with larger IO sizes. On the contrary, with BAPS(vFair)
the actual throughput matches the specified fair share —
demonstrating the desired fairness requirements. Though the
throughput of the HDD is lower than the SSD, we observed
similar results on the HDD shown in Table 2 — when three
VMs share the same HDD device the actual performance of
each VM is close to the fair share target.

More evaluation results obtained by varying read/write
ratios are presented in Figure 11 using the SSD. The read
ratio varies from 0% to 100% for VM1 and kept at 60%
for the other two VMs. The actual (measured) performance
curve follows the fair share target closely for all cases with
error ranging from 1% to 9%. Figure 11 shows that the
largest error (only 9%) happens when the read ratio is near
40%. These results show vFair provides very good fairness
for less-backlogged cases as the actual throughput reaches
the specified fair share target with less than 10% variation.
Besides, the utilization of the storage system is 100% using
BAPS(vFair) with the system-wide IO latency around 5 ms.

Non-backlogged case In the non-backlogged case, VM1
suffers greater unfairness when competing with high IO-
concurrency VMs as demonstrated in Section 2.

 -

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

 5,000

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Read ra�o

vm1 (16k) -- actual perf
vm1 (16k) -- fair share
vm2 (64k)-- actual perf
vm2 (64k)-- fair share
vm3 (128k)-- actual perf
vm3 (128k)-- fair share

Figure 11. Throughput (IOPS) distribution among three
VMs when varying read ratio.

In Figure 10, different from the random scenario, the
throughput of the sequential workloads (VM1) is far from
the specified fair share allocation even when VM1 is the
only running VM. Figure 10 shows the maximum through-
put (4413 IOPS), is only half of that (8141 IOPS) in the na-
tive system when only VM1 is running. Upon deeper investi-
gation, we found that this is caused by virtualization latency
(as discussed in Section 2.3). Moreover, the capacity of the
shared storage device changes in the shared phases due to
IO-blender effect — partial sequential IOs of VM1 become
random accesses. Thus the dotted line of VM1 represents the
target share in the best case (i.e., no IO-blender).

Under such circumstance, Figure 10 shows the through-
put of VM1 using CFQ(Linux) and PS(mClock) is quite far
from the line of the best fair share target (2714 IOPS) in the
three-VM share phases, only 10 IOPS and 414 IOPS respec-
tively. Whereas using BAPS(vFair) it becomes much higher,
975 IOPS. Though BAPS(vFair) cannot guarantee VM1 will
achieve the target throughput in such an extreme case, it
improves the performance of sequential workloads greatly,
compared to the other two schedulers — the throughput of
VM1 using BAPS(vFair) is 100X that of CFQ(Linux) and
2.35X of PS(mClock). The underlying reason for this is
vFair’s IO-blender compensation. Thus, by adjusting credits
among VMs BAPS(vFair) benefits the low IO-concurrency
VMs and achieves better fairness, yet with nearly full stor-
age utilization. Specifically, Figure 10(c) shows that with
BAPS(vFair) VM1’s throughput remains close to the fair
share target and VM2 and VM3 exactly reach the target
shares. The same observation applies in the HDD setup
shown in Table 3. In the three-VM share phases, the through-
put of VM1 using BAPS(vFair) is 2.8X of CFQ(Linux) and
2.1X of PS(mClock).

Further, we observed that as the IO concurrency in-
creases within VM1, the actual performance of VM1 quickly
reaches the fair share target. Table 4 shows the Fio tool’s
IO depth (i.e., the number of concurrent outstanding IO re-
quests) versus the measured performance (IOPS) of VM1.
As Table 4 shows, when Fio’s outstanding IO depth = 4,
vFair is able to ensure the exact fair share.

Fio IO depth 1 2 4
Actual Perf. of VM1 (IOPS) 975 1920 2690

Table 4. Actual performance vs. Fio IO depth.

 134

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Time (30s each interval)

vm2 (non-bursty)

vm1 (bursty)

Figure 12. Bursty workloads.

0

1

2

3

QFS Sysbench

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

CFQ(Linux)

PS(mClock)

BAPS(vFair)

Figure 14. Application-level throughput comparisons of
three schedulers between QFS and Sysbench.
5.1.2 Handling Bursts and Work-Conserving
To demonstrate the effectiveness of vFair with handling
bursty workloads and keeping work-conserving, we varied
workloads with idle time. Recall that bursty VMs are al-
lowed to receive IOs in a burst (up to the bursty threshold)
when such VMs have been idle in the past. This ensures that
if an application is idle for a while, it is preferred when it
becomes activated again.

In this experiment, we run two Fio workloads in two VMs
separately. The first VM is bursty, generating 16 KB 60%
random read in the rate of 200, 400, 800, 1600 and 3200
IOPS. The second VM is steady, producing 64 KB 60%
random read without idle time. Both VMs have the equal
shares. The vFair burst threshold was set to twice of the
allocated fair share.

Figure 12 shows the average storage utilization is almost
100% with the system-wide latency being around 5ms (using
SSD) — indicating the idle bandwidth from VM1 is taken
over by VM2. Further, VM1 is able to achieve its bursty
loads varying from 200 to 2600 IOPS. As intended, as the
bursty rate of VM1 increases from 200 to 3200, the through-
put of VM2 decreases correspondingly. At the bursty rate
3200 IOPS, VM1 reaches to the fair share limit, 2600 IOPS,
and VM2 drops to its allocated fair share, 1800 IOPS, as
well. These results indicate that the vFair credit-based mech-
anism is able to handle bursty applications and ensure fair-
ness and high utilization.

5.2 Application Workloads
We also test vFair with realistic applications: Sysbench [15],
Postmark [12], and DVDstore [6] as low IO-concurrency
workloads and secure copy (SCP) [14] and FTP [9] as high
IO-concurrency workloads. In Section 5.3, we use QFS [31]
(a high-performance distributed file-system) as the high
IO-concurrency workload to highlight how vFair can iso-

late independent throughputs and provide proportional fair
shares4. The low IO-concurrency applications running in-
side VM1 generate small random IO requests with size rang-
ing from 5 KB to 23 KB (obtained from measuring the re-
sults). VM2 runs an FTP server for clients to upload large
files, and VM3 runs secure copy (SCP) to copy large files
to clients. The average IO size of these two workloads is
about 122 KB. We set the proportional share weight to be
1(VM1):1(VM2):1(VM3).

Further, these experiment use the distributed version of
vFair as described in Section 4.3. Three VMs run in three
individual physical hosts and use the ISCSI protocol to con-
nect to the storage server. vFair is running in each physical
host. For all tests, all three VMs are running and servicing
requests at peak performance that fully utilize the underlying
storage. The 300G SSD is used as the shared storage device
due to high performance.
Sysbench First we evaluate Sysbench, the OLTP appli-
cation benchmark running on top of a MySQL database
with the InnoDB storage engine. We create a 20GB MySQL
database and run 16 client threads remotely in a client with a
1GB network connection to VM1. Recall that all three VMs
are operating simultaneously. In Table 5 Row 1, we observe
that the proportional share (PS) ratio using BAPS(vFair) is
close to 1:1:1. The PS ratio5 of Sysbench using CFQ(Linux)
is the lowest among all three schedulers, only 0.19:1:1, while
the PS ratio using PS(mClock) is 0.69:1:1.

Note that, the underlying storage is observed to be fully
utilized for all three schedulers, but because of the delay
problem discussed in Section 2.3, both CFQ(Linux) and
PS(mClock) favor FTP and SCP, resulting in more perfor-
mance for them and less performance for Sysbench. In con-
trast, BAPS(vFair) balances storage capacity between the
high IO-concurrency workloads (SCP and FTP) and the low
IO-concurrency workload (Sysbench). Figure 13(a) shows
that with BAPS(vFair) Sysbench’s performance increases
by 260% and 45% in comparison with CFQ(Linux) and
PS(mClock) respectively, and the file transferring bandwidth
(the sum of FTP and SCP) is naturally throttled by 31% and
22%. Consequently, by reducing the performance of FTP
and SCP and in turn improving the performance of Sys-
bench, BAPS(vFair) achieves very good fairness (i.e., PS
ratio in Table 5 Row 1 is close to 1:1:1).
Postmark Postmark emulates real world usage of a file
system using small file operations accessed by busy mail
servers and news servers. We generate 2 million small files
with sizes ranging from 1KB to 9KB. The test-bed con-
figurations are the same as the Sysbench testcase. Table 5
Row 2 shows that the PS ratio using BAPS(vFair) is able

4 Similar to the CloudSuite [5] benchmark, these applications simulate the
basic functional services of web serving, web searching, and data serving.
5 To calculate PS ratio in terms of service time, we need to know the storage
utilization for each VM — Pactual/Pi, where Pactual is the actually measured
performance and Pi is the saturation performance. Pi can be obtained using
sampled IO pattern and 3D-estimation model.

 135

0

1

2

3

4

Sysbench(VM1) FTP(VM2) SCP(VM3)

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

CFQ(Linux)

PS(mClock)

BAPS(vFair)

(a) Sysbench

0

5

10

15

20

25

30

35

Postmark(VM1) FTP(VM2) SCP(VM3)

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

CFQ(Linux)

PS(mClock)

BAPS(vFair)

(b) Postmark

0

1

2

3

4

5

6

7

DVDstore(VM1) FTP(VM2) SCP(VM3)

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

CFQ(Linux)

PS(mClock)

BAPS(vFair)

(c) DVDstore

Figure 13. Application-level throughput (trans/second) comparisons of three schedulers using (a) Sysbench, (b) Postmark and
(c) DVDstore.

PS ratio CFQ(Linux) PS(mClock) BAPS(vFair)
Sysbench(VM1):FTP(VM2):SCP(VM3) 0.19:1:1 0.69:1:1 0.99:1:1
Postmark(VM1):FTP(VM2):SCP(VM3) 0.03:1:1 0.49:1:1 0.92:1:1
DVDstore(VM1):FTP(VM2):SCP(VM3) 0.14:1:1 0.56:1:1 0.89:1:1

Sysbench(VM1):QFS(VM2-VM10) 0.64:1 0.81:1 0.99:1

Table 5. Proportional share ratio operating Sysbench, Postmark, DVDstore, and QFS benchmarks simultaneously.
to reach to 0.92:1:1 indicating very good fairness. Like be-
fore, the PS ratio using CFQ(Linux) is extremely low, only
0.03:1:1, while the PS ratio using PS(mClock) is 0.49:1:1.
Correspondingly, as shown in Figure 13(b) the throughput
of Postmark using CFQ(Linux) is extremely low, only 3%
of that using BAPS(vFair). The reason for this is that the
average IO size of PostMark is quite small (∼ 5KB). As
discussed in Section 2, workloads with smaller IO suffer
more performance degradation using CFQ(Linux). Com-
pared to PS(mClock), BAPS(vFair) increases the throughput
of Postmark by 85%. Correspondingly, with BAPS(vFair)
the (greedy) file transferring bandwidth reduces by 35% and
30% from that of CFQ(Linux) and PS(mClock), for the same
reason as discussed above.
DVDstore(DS2) Dell DVDstore implements a complete
online e-commerce application with a backend database
component (MySQL), a web application (Apache) layer
and driver programs. We use two clients over a 1GB net-
work connection to stress VM1 (where the web and the
database server are running). We generate several DS2 files
with 10GB sizes, and again the test-bed configurations are
the same as before. Table 5 Row 3 again indicates that
BAPS(vFair) provides a very fair PS ratio (0.89:1:1). We
also see that the PS ratio of DVDstore using CFQ(Linux)
is again extremely low, only 0.14:1:1, while the PS ratio
using PS(mClock) is 0.56:1:1. Moreover, in Figure 13(c)
the throughput of DVDstore using CFQ(Linux) is quite low,
only 16% of that using BAPS(vFair). BAPS(vFair) increases
throughput of DVDstore by 50% over that of PS(mClock).
The file transferring bandwidth with BAPS(vFair) reduces
by 29% and 10% compared to using CFQ(Linux) and
PS(mClock), again showing BAPS(vFair) naturally enforces
fairness for the (less aggressive) DVDstore application.

5.3 Distributed File System
Quantcast File System (QFS) is a high-performance, fault-
tolerant, distributed file system developed to support MapRe-

duce processing or other operations which read and write
large files sequentially. It involves a central metadata server
that manages the file system’s directory structure, mappings,
and many chunk servers (the distributed component man-
aging IO to the disks). In our experiment we launched 1
metadata server and 9 chunk servers (to satisfy 6+3 Reed-
Solomon Encoding). We use one VM running Sysbench to
compete for the shared storage. The sharing weight is set
to 1:1 between Sysbench and QFS (all 9 chunk servers are
treated as a group). For QFS, we issue read operations and
the average IO size is observed to be around 300 KB.

Table 5 Row 4 shows PS ratio for QFS and Sysbench. The
PS ratio of BAPS(vFair) is able to reach to 0.99:1, while the
ratio of CFQ(Linux) is 0.64:1 and the ratio of PS(mClock)
is 0.81:1. In Figure 14, the throughput of Sysbench using
BAPS(vFair) improves by 1.32X compared to CFQ(Linux)
and 47% compared to PS(mClock). Correspondingly, the
throughput of QFS with BAPS(vFair) reduces by 33% and
22% than using CFQ(Linux) and PS(mClock). This testcase
highlights that BAPS(vFair) is able to isolate throughput of
different tenants running various applications and achieves
the specified proportional fair shares.

6. Conclusion
We have presented vFair, a block-level storage scheduling
framework with a novel per-IO cost allocation model. For a
shared storage system vFair provides fine-grained IO alloca-
tion using a practical performance modeling method. vFair
achieves fairness among sharing VMs while maintaining
high resource utilization, regardless of the VMs’ workloads
and IO patterns. Our evaluation with micro-benchmarks and
realistic applications indicates the effectiveness of vFair,
compared with state-of-the-art techniques.

7. Acknowledgments
We thank our shepherd, Ippokratis Pandis, and the anony-
mous reviewers for their insightful comments. This work
was supported in part by NSF under Award 1219004.

 136

References
[1] Self-clocked fair queuing scheduler. https:

//www.ee.iitb.ac.in/~prakshep/IBMA_lit/manual/

manual239.html.
[2] AIO-stress. http://openbenchmarking.org/test/pts/

aio-stress.
[3] CFQ. https://www.kernel.org/doc/Documentation/

block/cfq-iosched.txt.
[4] Linux control groups. https://www.kernel.org/doc/

Documentation/cgroups/cgroups.txt.
[5] CloudSuite. http://parsa.epfl.ch/cloudsuite/

overview.html.
[6] DVDstore test application. http://www.dell.com/

downloads/global/power/ps3q05-20050217-Jaffe-

OE.pdf.
[7] I/O characteristics. http://docs.aws.amazon.

com/AWSEC2/latest/UserGuide/ebs-io-

characteristics.html.
[8] Fio - flexible I/O tester synthetic benchmark.

http://www.storagereview.com/fio_flexible_i_

o_tester_synthetic_benchmark.
[9] File transfer protocol. http://en.wikipedia.org/wiki/

File_Transfer_Protocol.
[10] IO-Blender problem. http://searchvirtualstorage.

techtarget.com/definition/I-O-Blender.
[11] KVM I/O overhead. http://events.linuxfoundation.

org/sites/events/files/slides/CloudOpen2013_

Khoa_Huynh_v3.pdf.
[12] Postmark. http://www.dartmouth.edu/~davidg/

postmark_instructions.html.
[13] The economics of virtualization: Moving toward an

application-based cost model. http://www.vmware.com/

files/pdf/Virtualization-application-based-

cost-model-WP-EN.pdf.
[14] Secure copy. http://en.wikipedia.org/wiki/Secure_

copy.
[15] Sysbench OLTP benchmark. http://www.

storagereview.com/sysbench_oltp_benchmark.
[16] J. C. Bennett and H. Zhang. Hierarchical packet fair queueing

algorithms. In ACM SIGCOMM Computer Communication
Review. ACM, 1996.

[17] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware schedul-
ing for heterogeneous datacenters. ACM SIGARCH Computer
Architecture News, 2013.

[18] A. Elnably, K. Du, and P. J. Varman. Reward scheduling for
qoS in cloud applications. In CCGRID. IEEE, 2012.

[19] A. Elnably, H. Wang, A. Gulati, and P. Varman. Efficient qos
for multi-tiered storage systems. USENIX Association, 2012.

[20] A. Gulati, A. Merchant, and P. J. Varman. pclock: an arrival
curve based approach for qoS guarantees in shared storage
systems. In SIGMETRICS. ACM, 2007.

[21] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda: Propor-
tional allocation of resources for distributed storage access. In
FAST, 2009.

[22] A. Gulati, A. Merchant, and P. J. Varman. mclock: Handling
throughput variability for hypervisor IO scheduling. USENIX
Association, 2010.

[23] A. Gulati, G. Shanmuganathan, I. Ahmad, C. A. Waldspurger,
and M. Uysal. Pesto: online storage performance management
in virtualized datacenters. In SoCC’11. ACM, 2011.

[24] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In NSDI, 2011.

[25] H. H. Huang, S. Li, A. Szalay, and A. Terzis. Performance
modeling and analysis of flash-based storage devices. In Mass
Storage Systems and Technologies (MSST), 2011 IEEE 27th
Symposium on. IEEE, 2011.

[26] L. Huang, G. Peng, and T.-c. Chiueh. Multi-dimensional
storage virtualization. In ACM SIGMETRICS Performance
Evaluation Review. ACM, 2004.

[27] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. ACM SIGMETRICS
Performance Evaluation Review, 2004.

[28] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Perfor-
mance differentiation for storage systems using adaptive con-
trol. ACM Transactions on Storage (TOS), 2005.

[29] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton. Inducing
models of black-box storage arrays. HP Laboratories, Palo
Alto, CA, Technical Report HPL-2004-108, 2004.

[30] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: man-
aging performance interference effects for qos-aware clouds.
In Proceedings of the 5th European conference on Computer
systems. ACM, 2010.

[31] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and
J. Kelly. The quantcast file system. Proceedings of the VLDB
Endowment, 2013.

[32] Y. Sfakianakis, S. Mavridis, A. Papagiannis, S. Papageorgiou,
M. Fountoulakis, M. Marazakis, and A. Bilas. Vanguard: In-
creasing server efficiency via workload isolation in the stor-
age i/o path. In Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, 2014.

[33] D. Shue and M. J. Freedman. From application requests
to virtual iops: Provisioned key-value storage with libra. In
Proceedings of the Ninth European Conference on Computer
Systems. ACM, 2014.

[34] D. Shue, M. J. Freedman, and A. Shaikh. Performance isola-
tion and fairness for multi-tenant cloud storage. In Presented
as part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12). USENIX, 2012.

[35] P. Valente and F. Checconi. High throughput disk schedul-
ing with fair bandwidth distribution. IEEE Transactions on
Computers, 2010.

[36] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger.
Argon: Performance insulation for shared storage servers.
USENIX, 2007.

[37] C. Xu, S. Gamage, H. Lu, R. Kompella, and D. Xu. vturbo:
Accelerating virtual machine i/o processing using designated
turbo-sliced core. USENIX Association, 2013.

 137

[38] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX, 2013.

[39] J. Zhang, A. Sivasubramaniam, A. Riska, Q. Wang, and
E. Riedel. An interposed 2-level I/O scheduling framework
for performance virtualization. In Proceedings of the Inter-
national Conference on Measurements and Modeling of Com-
puter Systems. ACM press, 2005.

 138

