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ABSTRACT
Block-layer caching systems improve the I/O performance

by using hybrid storage devices; the advent of fast, byte-

addressable storage enables caching systems to further lever-

age new storage tiers (e.g., with persistent memory as the

cache device and SSD as the backend device) to achieve bet-

ter caching performance. However, the new storage devices

also challenge the design and implementation of existing

block-based caching systems. This paper conducts a com-

prehensive performance study of a popular caching system,

Open CAS, and identifies new, unrevealed software bottle-

necks. Our observations and root cause analysis cast light

on optimizing the software stack of caching systems to in-

corporate emerging storage technologies.

CCS CONCEPTS
• Information systems→Hierarchical storage manage-
ment; Storage architectures.
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1 INTRODUCTION
Caching systems are implemented at various layers of the

storage stack to improve the performance of storage systems.

For example, the Linux operating system uses DRAM as a

volatile cache (i.e., page cache), facilitating faster I/O than

directly accessing slower, bulky storage devices (e.g., HDDs).
However, DRAM is expensive and has limited capacity. Fur-

ther, as fast Solid-State Drives (SSDs) are widely available,
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caching implemented at the block level becomes attractive –

SSDs are much faster than HDDs, provide higher capacities,

and cost less per GB of storage compared to DRAM. How-

ever, SSDs are still more expensive than HDDs where large

storage capacities are needed.

To achieve high I/O performance while reducing mone-

tary costs, block-layer caching systems (e.g., bcache[1], dm-

cache[4], and dm-writecache[5]) enable the use of hybrid

storage, where a fast persistent block device can be used for

caching and a slower one used for large storage capacity. For

example, Open CAS [11], an advanced caching solution re-

cently developed by Intel, allows different cache modes and

the use of various caching policies based on I/O workload

characteristics for better performance.

While the majority of existing caching systems are pri-

marily designed to improve the performance of HDDs (i.e.,
backend devices) by caching data on SSDs (i.e., cache de-

vices), the advent of fast storage and interconnect technolo-

gies, such as persistent memory (PMem) [7], Non-Volatile

Memory Express (NVMe) [6], and Compute Express Link

(CXL) [3], present new opportunities but also pose critical

challenges. On the one hand, caching systems can leverage

new tiered storage devices for cache devices (e.g., PMem)

and backend devices (e.g., SSDs), accelerating caching per-

formance. On the other hand, the overhead of the software

stack and the block-centered design of caching systems may

prevent it from fully unlocking the capabilities of fast and/or

byte-addressable storage devices.

In this paper, we use Open CAS as an example caching

system and perform a thorough performance study using

Intel Optane PMem as the cache device and various types

of SSDs as the backend device. Our study unveils important,

previously undetected software bottlenecks in Open CAS:

1) In addition to data updates, the block-based metadata up-

dates (i.e., for maintaining the information of cached data)

in Open CAS consume significant cache device bandwidth –

e.g., same as data updates. 2) The cache eviction operation

in Open CAS further deteriorates this situation by involving

even more metadata updates (e.g., 2×). 3) Caching systems

that incorporate optimizations with outdated assumptions

make it challenging to predict performance accurately. 4)

https://doi.org/10.1145/3599691.3603413
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Open CAS lacks effective support for both emerging storage

technologies and changing workloads.

We believe our observations and result analysis will cast

light on optimizing caching systems to well support both

emerging hardware and dynamic workloads.

2 BACKGROUND AND RELATEDWORK
Fast storage and interconnect: With new storage tech-

nologies like 3D XPoint [10], NVMe SSDs (over the PCIe

bus) achieve much higher bandwidth (e.g., 8 GB/s) and lower
latency (e.g., 3𝜇s) [25]. Further, byte-addressable persistent
memory (PMem) has also been commercially available [7],

allowing programs to access data in non-volatile memory

directly from CPU using load and store instructions. PMem

offers an order of magnitude higher capacity than DRAM and

within an order of magnitude performance of DRAM [23].

Though Intel discontinues its Optane product recently,

the storage community is moving to investigate high-speed

CPU-to-device interconnect [8], i.e., Compute Express Link

(CXL) [3]. CXL provides a more unified interface to disag-

gregate various types of storage devices, such as DRAM,

PM, and PCIe devices, directly to CPU. CXL also has the

potential to replace PCIe storage’s block interface with a

memory-like, byte-addressable interface with minor modifi-

cations [18]. We envision that storage devices will continue to
evolve, becoming increasingly faster, offering higher bandwidth,
lower latency, and providing byte-addressability through a
memory-like interface. While our study primarily centers

around PMem (connected via the memory bus), we believe

it provides valuable insights applicable to the utilization of

future fast, byte-addressable storage devices, such as those

leveraging Compute Express Link (CXL).

Block-level caching systems: Storage-aware caching sys-
tems comprise multiple tiers of storage devices, including

DRAM, PMem, SSD, HDD, etc. The faster devices are more

expensive and used at higher tiers than slower devices. In the

context of high-performance devices in multi-tier caching,

there have been work targeting different layers of the storage

stack, e.g., Open CAS [11], OrthusCAS [22], and NVCache

[15]. They are cache acceleration frameworks implemented

at the block level that uses a high-performance block device

on the local host as a cache for a slower block device. Or-

thusCAS [22], when under heavy load, can offload excessive

I/Os from the caching layer to the capacity layer. It can be

integrated with Open CAS with minor modifications. Hence

most of our observations should also apply to OrthusCAS.

MapperX is an extension to the Linux kernel’s DM-cache

component and improves the crash recovery time by ad-

dressing the drawbacks of asynchronous metadata updates

in DM-cache [24]. First Responder is a caching framework

implemented at the Virtual File System (VFS) layer that uses

fast PMem devices as a buffer for traditional file systems

like EXT4 [21]. Strata is a local file system that works with

multi-tier storage, including PMem; it implements a file sys-

tem that spans both user and kernel space with caching [20].

Assise is a distributed file system that uses PMem as a fast

and persistent client-local caching device [14].

Open CAS: Open Cache Acceleration Software, short for

Open CAS [11], is a block-level caching solution primarily

designed to improve the performance of HDDs (backend de-

vices) by caching data on SSDs (cache devices). Open CAS is

widely used and studied in both industrial solutions [12, 13]

and research projects [16, 22]. There are two different im-

plementations of Open CAS – SPDK and Open CAS Linux.

Our study focuses on Open CAS Linux. Open CAS Linux

is a kernel module that works under Linux in-kernel file

systems (e.g., EXT4, XFS, and Btrfs). It handles I/O requests

from upper-layer file systems through a CAS virtual block

device and submits I/O requests to underlying storage de-

vices according to cache modes and customized cache rules.

Open CAS supports six cache modes, and this paper, due to

the page limit, focuses on the most commonly used cache

mode – Write-Back (WB).

3 MEASUREMENT STUDY
This section presents a comprehensive performance study

and analysis of Open CAS with Intel Optane Persistent Mem-

ory as the cache device. We use it as a case study to un-

derstand the performance of emerging storage devices on

modern caching systems in various conditions and configura-

tions. Based on the performance results, we provide insights

to guide the redesign or optimization of existing caching

systems to release the full power of emerging storage de-

vices. This performance study focuses on write performance

evaluation because writes are more complicated than reads

and often cause system performance bottlenecks.

3.1 Experimental Configurations
The experiments are conducted on an HPE ProLiant DL380

Gen10 Plus server with 1 × Intel Xeon Silver 4314 proces-

sor, 4 × 32GB DDR4 3200MHz DRAM, and 4 × 256GB Intel

Optane 200 Persistent Memory. For comparison, the server

also includes 1 × 400GB Intel Optane NVMe SSD P5800X,

1 × 960GB Samsung NVMe SSD PM9A3, and 1 × 960GB

Samsung SATA SSD PM863. Ubuntu Server 20.04.6 LTS is

installed with 5.4.0-144-generic Linux Kernel and Ext4 as

the file system (with journaling disabled). To generate write

workload, we use FIO (version 3.34-13) in single thread mode

with 1) direct I/O (–direct=1) to bypass page cache and 2)

synchronous data I/O (–sync=dsync). Since Open CAS is de-

signed to support SSDs and HDDs, Optane PMem can only
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Figure 1: FIO experiments without Open CAS.

be used as a regular block device – direct access (DAX) mode

is not supported.

Before running the tests, we pre-create an 8GB test file and

flush it to the backend device (i.e., thus to avoid filesystem

metadata updates during the write operations, as we mainly

focus on data updates). The experiments are carefully crafted

to cover different scenarios. The capacity of the cache device

is set to 4GB and FIO is used to write a file with different sizes

(from 2GB to 6GB) to the Open CAS virtual block device. To

further understand the impacts of various factors, we also

test different cache line sizes (𝐶𝐿 = 4KB, 16KB, and 64KB),

various single write sizes (𝑊𝑆 from 4KB to 1024KB), and

multiple accesses of the same file.

3.2 Raw Performance of Storage Devices
We first benchmark the write bandwidth of all storage de-

vices withoutOpen CAS using FIO to generate write requests

of different sizes. The results are used as the baseline when

compared to Open CAS. As illustrated in Figure 1, PMem

significantly outperforms all types of SSDs, especially with

small write sizes. Compared to P5800X which uses the same

3D XPoint technology, PMem still consistently exhibits bet-

ter write bandwidth across all write sizes. This is mainly

because although they both use Intel Optane memory media,

the Optane PMem is in a DIMM package and operates on

the DRAM bus (i.e., NVDIMM) while Optane P5800X SSD

resides in a standard NAND package model (i.e., U.2) on the

PCIe bus using the NVMe protocol [9]. The results are also

consistent with previous studies [17]. The results indicate

that PMem is an ideal option for cache devices due to its

high performance.

3.3 Open CAS Performance
Our performance study of Open CAS focuses on the Write-

Back (WB) mode. The WB engine, the major component

of WB mode, first writes data to the cache device in one

or multiple cache lines and acknowledges the application

before the data is written to the backend device. A cache

line is the smallest data unit that Open CAS can manage.

Every occupied cache line is associated with a core line on

Open CAS Metadata

Metadata Segment Metadata Block

struct ocf_metadata_map {
  # Block Address
  # Backend Device ID
  # Status Bits
}

Metadata Chunk

…… ……

…
…

collision segment

Figure 2: Open CAS Metadata Structure

the backend device and the cache line will be eventually

written back to its associated core line. Open CAS supports

different cache line sizes ranging from 4KB to 64KB. Note

that the cache line size cannot be changed once the virtual

block device of Open CAS is initialized. The dirty data on the

cache device are flushed to the backend device periodically

by the cleaner in the background
1
.

If data is written to an occupied cache line, it is a cache hit.

Otherwise, it is a cache miss. If the cache device is full, cache

evictions are triggered to clear some occupied cache lines

based on the default LRU eviction policy. To measure the

performance of Open CAS with more sophisticated cache

hit and cache eviction scenarios, we consecutively write the

same file twice i.e., the 1st access and 2nd access, combined

with different cache line sizes (𝐶𝐿 = 4KB to 64KB) and dif-

ferent file sizes (𝐹𝑆 = 2GB to 6GB while the capacity of

cache device (𝐶𝐶) is 4GB). We will particularly examine the

following four cases:

• 1st access and 𝐹𝑆 < 𝐶𝐶 , full cache miss and no cache

eviction.

• 1st access and 𝐹𝑆 ≥ 𝐶𝐶 , full cache miss and cache

evictions for the last part of the file.

• 2nd access and 𝐹𝑆 < 𝐶𝐶 , full cache hit and no cache

eviction.

• 2nd access and 𝐹𝑆 ≥ 𝐶𝐶 , full cache miss and possibly

cache evictions for the entire file.

3.3.1 Metadata Overhead.
Observation: Figure 3 shows the write bandwidth when

𝑊𝑆 = 𝐶𝐿, meaning each write request accesses exactly one

cache line. When 𝐹𝑆 < 𝐶𝐶 , the 1st access yields lower band-

width than the 2nd access in all cases, but the gap between

the two accesses shrinks as 𝐶𝐿 and𝑊𝑆 increase from 4KB

to 64KB. For example, with PMem+PM9A3, the bandwidth

gap changes from 40%@4KB, 25%@16KB, to 14%@64KB.

Analysis: For the 1st access, due to cache misses, the meta-

data of Open CAS needs to be updated and flushed to the

1
To ensure great control over the study of Open CAS behavior, the cleaner

process is disabled in all the experiments.
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Figure 3: Write bandwidth of Open CAS Write-Back mode when WS = CL

cache device for each data write. For the 2nd access, no meta-

data operation is involved due to a full cache hit.

More specifically, as shown in figure 2, Open CAS has

different types of metadata information stored in multiple

segments, among which the “collision” segment has the most

profound performance impact based on our analysis. The

collision section includes a set of 4KB metadata blocks (in

DRAM), each of which consists of multiple 12-byte chunks

(12, 18, and 42 bytes for 𝐶𝐿 = 4KB, 16KB, and 64KB re-

spectively) storing the mapping between a cache_line and a

core_line and status bits (valid and dirty).

Each write request in the 1st access needs to 1) update a

collision block of 12 bytes, 2) overwrite the 4KB metadata

block where the collision metadata chunk resides, and 3)

flush the corresponding 4KB metadata block to the cache de-

vice. Therefore, the total number of bytes written to the cache

device for a single write in the 1st access is 4KB metadata

+ cache-line-size data. In the case of 𝐶𝐿 = 4KB, it is 2 × 𝐹𝑆
written to the cache device for the 1st access. For example,

when 𝐶𝐿 = 𝑊𝑆 = 4KB, the difference of write bandwidth

between 1st and 2nd access for PMem and P5800X are 40%
and 48%. The impact of the extra metadata write in the 1st

access is amortized as 𝐶𝐿 increases, which explains why the

difference shrinks as we mentioned above.

Table 1: CPU usage breakdown

Raw1 WB_1st WB_2nd

FIO 15% 7% 11%

OS 3% 3% 7%

VFS 3% 2% 3%

ext4 16% 11% 16%

Open CAS N/A 45% 38%

Block I/O 54% 25% 20%

PMem 9% 7% 5%

Table 1 shows the CPU usage breakdown (via profile [2])

for the FIO raw performance, 1st, and 2nd accesses when

𝐹𝑆 < 𝐶𝐶 . We observe that Open CAS takes up significant

CPU time in both 1st (45%) and 2nd (38%) accesses (including

both metadata and data operations). While it is hard to get

the portion caused by the metadata operations accurately,

our estimation shows that metadata takes up to 50% of the

CPU usage consumed by Open CAS in the 1st access.

Takeaway #1: The metadata updates of Open CAS use addi-
tional cache device bandwidth. Meanwhile, the software stack
of Open CAS consumes a significant amount of CPU resources.

3.3.2 Cache Eviction Overhead.
Observation: Figure 3 also shows that when 𝐹𝑆 ≥ 𝐶𝐶 , the
bandwidth of the 1st access drops gradually as file size in-

creases, while the bandwidth of the 2nd access drops dras-

tically (compared to when 𝐹𝑆 < 𝐶𝐶) and keeps around the

same value as file size increases. The same pattern applies

to all the combinations of cache and backend devices in our

experiments. But switching the backend device from PM9A3

(NVMe SSD) to PM863 (SATA SSD) brings a noticeable dif-

ference that increases as CL and WS increase.

Analysis: The major difference when 𝐹𝑆 > 𝐶𝐶 is that cache

evictions are triggered. For the 1st access, based on the de-

fault LRU eviction policy, the oldest cache lines need to be

evicted for writing the last part of the file. While for the

2nd access, all data written to the cache device during the

1st access need to be evicted, leading to cache eviction for

every write request. For example, with 𝐹𝑆 = 5GB, the first

1GB data need to be evicted and replaced with the last 1GB

data in the 1st access. When the 2nd access starts, there is

no cache hit for the 1st GB of the file because it is already

evicted at the end of the 1st access. Hence, the 2nd GB of the

file needs to be evicted based on LRU. This process continues

throughout the entire 2nd access. Hence, the different write

bandwidth values of the 1st and 2nd accesses are mostly

due to distinct cache eviction behaviors. A cache eviction in

Open CAS involves multiple steps:

(1) Read old data from cache device to DRAM (CL size).

(2) Write old data to the backend device (CL size).
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(3) Update status bits of old metadata and write it to cache

device (4KB).

(4) Write new data to cache device (CL size).

(5) Write new metadata to cache device (4KB).

In total, there is𝐶𝐿 read from the cache device + (𝐶𝐿+4𝐾𝐵+
4𝐾𝐵) write to the cache device + 𝐶𝐿 write to the backend

device. Notice again, to update the valid bit, it is not the 12-byte
collision metadata chunk that needs to be updated and flushed
to the cache device, but the entire 4KB collision metadata block.
In the worst case (i.e.,𝑊𝑆 = 𝐶𝐿 = 4KB), the total number of

bytes written to the cache device can be 3× for awrite request

with cache eviction. If𝑊𝑆 or 𝐶𝐿 > 4KB, this overhead is

amortized due to larger data size or because the collision

metadata block of multiple cache lines for the same write

request may share the same 4KB page (𝑊𝑆 > 𝐶𝐿).

To summarize, the write bandwidth, when 𝐹𝑆 ≥ 𝐶𝐶 ,

mainly depends on three factors: 1) the write bandwidth

of the first 4GB of the file, 2) the overhead of the write ampli-

fication to the cache device caused by cache eviction (up to 3
times), and 3) the write bandwidth of the backend device to

handle the old data flush caused by cache eviction. For the

1st access, cache eviction happens when writing beyond the

cache capacity. Hence the impact of cache eviction increases

with larger file sizes, leading to a gradually decreasing write

bandwidth. While for the 2nd access, every write request

triggers a cache eviction. Hence, the impact of cache eviction

stays roughly the same throughout the 2nd access, leading

to a consistently low write bandwidth.

Takeaway #2: Cache eviction triggers even more metadata
updates, resulting in significant write amplification and over-
head.

3.3.3 Write Invalidate.
Observation: Unlike the experiments shown in Figure 3

where𝑊𝑆 = 𝐶𝐿, the real-world workloads often consist of

different write sizes other than the cache line size. We ob-

serve that when one write request requires multiple cache

lines (i.e.,𝑊𝑆 > 𝐶𝐿), the behavior and performance of Open

CAS change significantly. Figure 4 shows the write band-

width of Open CAS when one write request needs 4 and

128 cache lines, respectively. As we change the write size

from𝑊𝑆 = 𝐶𝐿 (Figure 3a) to𝑊𝑆 = 4 × 𝐶𝐿 (Figure 4a), a

similar pattern is observed (Section 3.3.2). However, when

the write size is changed to𝑊𝑆 = 128 × 𝐶𝐿 (Figure 4b),

the same pattern does not fully apply. When 𝐹𝑆 < 𝐶𝐶 , the

write bandwidth of the 2nd access remains better than the

1st access as the 1st access involves higher overhead due to

metadata updates as we discussed (Section 3.3.2). However,

when 𝐹𝑆 ≥ 𝐶𝐶 , the write bandwidth of the 1st access no

longer drops gradually. In fact, it slightly increases when

PM9A3 is used as the backend device. In contrast, for the 2nd

access, the write bandwidth starts to drop gradually as file
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Figure 4: Write bandwidth of Open CAS Write-Back
mode when WS > CL.

size increases. The other observation is when𝑊𝑆 = 512KB,

P5800X outperforms PMem in the 2nd access by ∼25%.
Analysis: After analyzing Open CAS statistics and source

code, we found it is mainly caused by the Write-Invalidate

(WI) mode of Open CAS and the performance characteristics

of the storage devices. WI mode can be triggered in several

different ways and it passes write requests directly to the

backend device. In our experiments, WI mode is triggered

if 32 cache line evictions cannot provide enough free cache

lines to accommodate the write request (32 is defined by a

constant variable). More specifically, when a write request of

512KB is received, theWB engine tries to evict up to 32 cache

lines based on LRU. Since the write request requires 128 4KB

cache lines,WImode is invoked and data is directlywritten to

the backend device.WImode can reduce the number of cache

evictions and avoid the overhead discussed in Section 3.3.2.

However, if the performance of the backend device is not

desirable (low), it can still lead to low write bandwidth.

For PMem + PM9A3, when 𝐹𝑆 > 𝐶𝐶 and𝑊𝐵 = 512KB,

during the 1st access the WB engine tries to evict cache

lines from PMem beyond the 4th GB of the file. But since

it requires more than 32 cache line evictions, WI mode is

invoked and data are directly written to PM9A3 without
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incurring the metadata and eviction overhead. Hence, at the

end of the 1st access, the first 4GB of the file is stored on

PMem, and the rest of the file is stored on PM9A3. The write

bandwidth of the 1st access is slightly higher than when

𝐹𝑆 < 𝐶𝐶 because the performance of PM9A3, @512KB, is

slightly better than the PMem with the metadata overhead.

For the 2nd access, it is no longer full cache eviction as we

discussed in Section 3.3.2 because the last part of the file was

written to PM9A3 rather than PMem in the 1st access. Hence,

it is cache hit for the first 4GB of the file, and data is written

to PMem without metadata overhead. The rest of the file is

written to PM9A3 due toWI, similar to what happened in the

1st access. Since the write bandwidth to PMem with cache

hit is better than PM9A3 in WI, the overall write bandwidth

of the 2nd access decreases gradually as file size increases,

i.e., more data need to be written directly to PM9A3 by WI.

In this experiment, the performance of the backend device

is critical. When PM9A3 is replaced with PM863 with lower

performance, the write bandwidths of both the 1st and 2nd

drop more significantly than PM9A3 when 𝐹𝑆 > 𝐶𝐶 .

Takeaway #3: Static optimizations and configurations of
caching systems without considering the interplay of work-
load and storage device performance characteristics may yield
intricate behaviors, leading to undesired performance.
We also observe that PMem yields slightly lower write

bandwidth than P5800X for the 2nd access when 𝑊𝑆 =

512KB, and it is probably because Open CAS uses PMem

as a regular block device. In Open CAS, cache lines are di-

vided into multiple lists. If a write request involves multiple

cache lines, free cache lines are selected from those lists, and

the write is grouped into a smaller number of mini-batch

writes. With P5800X as the cache device, the NVMe driver

handles the mini-batch writes in a non-blocking manner,

while PMem has to handle multiple writes sequentially on

CPU leading to lower performance. Also, since PMem is used

as a block device by Open CAS, a considerable amount of

CPU resources are spent on the block I/O layer which can

be minimized with PMem DAX mode.

Takeaway #4: Emerging storage devices are not explicitly
well supported and optimized by caching systems leading to
discounted performance behaviors.

4 INSIGHTS AND CONCLUSIONS
In this paper, we present a detailed performance study of

Open CAS on Intel Optane PMem and conclude four take-

aways. Based on our analysis, we present the following in-

sights for designing and/or optimizing caching systems.

First, as Open CAS has been originally built for block de-

vices, it is agnostic of emerging storage devices like PMem.

Simply communicating with PMem through a block-layer

interface is extremely inefficient. Instead, to fully explore the

performance of PMem, a caching system should enable the di-

rect access (DAX) mode for PMem via its byte-addressability

interface. Caching devices and backend devices also need to

be handled differently for devices like PMem, because the I/O

processing of such devices happens on-CPU using load/store

while the processing for SSDs and HDDs can be partially

offloaded to the storage controllers.

Second, Open CAS involves a large number of metadata

updates to persist cache line information.While the update to

each metadata involves a small number of bytes, the block ac-

cess granularity of Open CAS results in significant write am-

plification. As byte-addressability is a key feature provided

by PMem and future CXL-connected SSDs [19], a caching

system should leverage such a byte-addressable interface for

more fine-grained metadata updates.

Last, providing a “one-size-fits-all” optimization may not

be possible for caching systems, given that we have more di-

verse and heterogeneous storage devices and dynamic work-

loads. More “tunable” optimization approaches by consider-

ing the storage performance characteristics and workload

composition might help.
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