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Abstract—The correct implementation of network policies for
“in-production” network functions is critical, as it determines the
security, availability and performance of a production network.
Usually, conducting network testing for these network functions
in a live production environment is attractive, as the production
environment captures the most exact, realistic dynamic state
and vulnerabilities of the system under test. However, doing
so also brings potential risks of impacting or even damaging
the production system. To address this tension, we present
ShadeNF, a novel online platform for testing in-cloud network
functions in a production-like environment, without disrupting
the real production system. ShadeNF enables such a production-
like environment with an exact live clone of production network
functions and real production traffic as the test traffic. In
designing and implementing ShadeNF, we address several key
challenges and contribute new techniques in supporting such a
testing platform, including an SDN-based live, consistent snap-
shot approach, a new programmable forwarding plane, and a
scaled test traffic generator. We implement a ShadeNF prototype
upon OpenStack and demonstrate that ShadeNF successfully
captures the dynamics of production systems, and effectively
localizes a range of policy violations in SDN/NFV systems.

Index Terms—software-defined networking, network function
testing, live consistent cloning

I. INTRODUCTION

The correct implementation of network policies for under-

lying network functions (NF) — such as routing, network

address translation (NAT), virtual private network (VPN), load

balancing, intrusion detection systems (IDS) and intrusion

prevention systems (IPS) — is critical, as it determines the

security, availability and performance of a production network

[30], [31], [36], [50]. However, it is also notoriously known

that making sure network policies are correctly implemented

is challenging, even for the basic reachability policies [32],

[38], [39], [43], [45], [49], [52], [53]. This becomes more

challenging in today’s cloud environments featured with soft-

ware defined networking (SDN) -enabled network function

virtualization (NFV) [34], [35], [46], where multiple tenants

are hosted with much richer in-network services in the form

of chained, virtualized network functions with dynamic, cus-

tomized network policies [6], [7], [14], [47].

To address this problem, existing approaches have been pro-

posed to model network behaviors, generate synthetic network

traffic, and test intended network policies [33], [39], [40], [43],

[54]. However, these solutions face a fundamental challenge

in SDN-enabled NFV — lack of capturing dynamics of the

production system. For example, virtual network functions

(running in virtual machines) can be arbitrarily composed

to realize service chaining on the fly; the chained network

functions create more complex unpredictable network policies.

Further, the on-demand cloud service model compounds this

complexity with dynamic loads and varying network function

requirements from various tenants sharing the same network

infrastructure [1], [8], [10].

One (seemingly straightforward) solution may be to extend

existing network models to capture dynamic system behaviors,

and thus generate test traffic with broader coverage. However,

despite the possibility of doing so, such model-based ap-

proaches will easily result in state-space explosion, which will

take extensive time for completing a simple network testing

task even for a small network. On the other hand, focusing

on a subset of “intended” polices may reduce the state space

[31], but could fail to catch some critical sources of violations

in practice — in most cases, it is even hard (or impossible)

to know the intended polices without really operating network

functions in a production environment (e.g., with improvised

changes in NFV configurations/policies).

Ideally, conducting network testing in a live production

environment — complementary to model-based testing ap-

proaches — is attractive, as the production traffic captures the

most exact, realistic dynamic state of the system under test that

model-based testing tools cannot provide. However, doing so

also brings potential risks of impacting or even damaging a

live production environment, as mis-configured “inline” test

network functions could wrongly manipulate network traffic

— numerous network outages are actually caused by (tiny)

mis-configurations of a live production system [9], [16], [21],

[23]. It becomes more problematic in a multi-tenant cloud

environment, as such misbehaviors could impact unrelated

tenants [21].

In this paper, we present ShadeNF, a novel online plat-

form for testing in-cloud SDN-enabled network functions in

a production-like environment, without disrupting the live

production system. ShadeNF enables such a production-like

test environment (hereinafter referred to as shadow system)

with an exact clone of the production network functions (to

be tested). With this live clone, ShadeNF captures the dynamic

state (as well as vulnerabilities) of the production system.

Further, ShadeNF steers real production traffic to the shadow

system as the test traffic, with which ShadeNF captures the

dynamic state of the production workloads. Last, ShadeNF

ensures that the testing be operated in a completely isolated

environment with desired resources (e.g., CPU, memory and

storage), hence not interfering with the production system.

With these, ShadeNF offers the infrastructure-level support

to deploy isolated, online network function testing services
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on behalf of tenants, running transparently to the tenants’

production environment.

In designing and developing ShadeNF, we re-visit tradi-

tional wisdom, identify key challenges of existing techniques,

and provide new solutions to address these challenges in the

SDN-enabled NFV scenario. Particularly, we make three key

contributions in supporting such a testing platform:

• SDN-based Live Cloning. To build a production-like enri-

onement, ShadeNF first copies the production network func-

tions (to be tested) to a shadow system. ShadeNF introduces

a new live, consistent snapshot approach (Section III-A)

to clone chained, dependent network functions. ShadeNF

leverages SDN-enabled programmable virtual switches —

to which network functions are connected — to extensively

buffer any packets produced during the inconsistent phase

of a snapshot, and to re-send such buffered packets once

the inconsistent phase ends. This approach not only pre-

serves a consistent snapshot, but more importantly, reduces

performance overhead (e.g., by TCP backoff) without any

modifications to VMs software and legacy network flows.

• Programmable Forwarding Plane. To ensure strong iso-

lation during the process of network function testing,

ShadeNF places the shadow system in an isolated environ-

ment. However, to capture the dynamics of the production

workloads, ShadeNF needs to bring the production traffic

to this isolated shadow system. To realize this, ShadeNF

creates a new traffic forwarding plane (Section III-B), which

selectively, unidirectionally steers the production traffic

from the production system to the shadow system with the

help of programmable forwarding plane. This forwarding

plane also helps to enable auto-chaining of arbitrary net-

work functions (on demand) in the shadow system, resulting

in a much more flexible testing framework.

• Scaled Test Traffic Generator. With pure production traffic

as test traffic, ShadeNF may not explore sufficient cases

that trigger all network policies under test. To explore

broader test coverage, ShadeNF advances existing model-

based approaches in generating synthetic test traffic, by tak-

ing patterns of real production traffic into account (Section

III-C). ShadeNF populates synthetic test traffic with realistic

traffic patterns (captured by ShadeNF automatically), such

as the number of flows, protocols of flows, sizes of payload,

and their combinations. Thus, these synthetic test traffic

approximates the real production traffic and can be inserted

on demand to the shadow system for network testing.

We have implemented a ShadeNF platform prototype upon

OpenStack [15] (i.e., a popular open source cloud platform),

with the above SDN-based live, consistent snapshot approach,

and the new programmable forwarding plane. We have also

developed the scaled synthetic test traffic generator, monitoring

and resolution. Our evaluation in a realistic cloud test-bed

shows that in the shadow system: (1) ShadeNF efficiently

captures the dynamics of a production system at scale without

affecting the production system; and (2) ShadeNF effectively

detects a variety of policy violations.

Monitor

Light IPS

Heavy IPS

Allow

Block

Trusted IP addresses

Otherwise

# of bad 
connection > 

10

Otherwise
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Otherwise

Traffic from Internet 
to Department

Fig. 1: An example of multi-stage policies.

Roadmap. Section II motivates our work with background

and practical challenges. Section III details the design of

ShadeNF, while Section IV introduces the implementation.

Section V presents empirical evaluation. Section VI overviews

related work and Section VII concludes the paper.

II. MOTIVATION

A. Background
Networking function virtualization (NFV) proposes to de-

couple network functions, such as routing, NAT, VPNs, load

balancing, and IDS/IPS, from proprietary hardware and plat-

forms, and allows them to be virtualized and run on com-

modity hardware in the form of virtual machines (VM) [34],

[35], [46]. NFV enables appealing usage scenarios, such as

dynamic provisioning (e.g., adjusting associated resources)

and elastic scaling (e.g., increasing/decreasing the number of

VM instances), and is becoming a new service model in cloud

[4]. Further, with one key capability being programmatically

controlling network resources, software-defined networking

(SDN) naturally plays an important role in NFV orchestration

such as configuration of network connectivity, automation of

network operations, network security and policy control [25].

In consequence, SDN-enabled NFV creates a much dynamic
network environment in cloud, driven by on-demand service

requirements from tenants [1]. For example, tenants can create

customized networks with varying network topologies, func-

tions, and policies on the fly (e.g., service function chaining

[6], [7], [14], [47]). Network operators of these tenants can

easily make changes to their network configurations in re-

sponse to changing service requirements (e.g., to adjust the

sequence of network functions, update policies, and bring in

new network functions). The chained, stateful network func-

tions enable a range of context-dependent policies that require

network traffic to go through a sequence of network functions

[31]. As illustrated in Figure 1, an intrusion detection system

(IDS or light IPS) can reroute suspicious traffic to a deep

packet inspection (DPI or heavy IPS) for further in-depth

analysis — the IDS and DPI network functions create a service

function chain. Looking ahead, network function chaining is

poised to enable richer network processing services with more

complex context-dependent policies.

B. Network Testing Challenges

The security, availability and performance of tenant net-

works depend closely on the correct configurations of network

policies. It is particularly true for SDN-enabled NFV, where

network configurations (and polices) are dynamically changing

in response to on-demand network service requirements (as

mentioned above). However, it is well known that making sure
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network policies are correctly implemented is challenging,

even for basic reachability policies (e.g., can Host A talk to

Host B?) due to large state space [32], [38], [39], [43]. For

instance, traditional tools may take hours to complete even for

a small network setup with less than 10 nodes [31].

The system dynamics and context-dependent policies raised

by chained network functions further explode the network

state space, making it daunting to perform network testing.

Recent effort [31] proposes promising approaches to mitigate

this problem by taking in “intended” policies from the network

operators to generate synthetic test traffic and inject such test

traffic into the “offline” data plane. However, when applying

such approaches to a live production environment, we still face

the following several compelling challenges:

First, these approaches operate on a subset of offline, pre-

defined policies, and do not directly operate in a real dynamic

production environment where network policies and config-

urations change dynamically. In contrast, numerous network

outages are caused by online mis-configurations of a live

production system over operation time [9], [16], [21], [23].

Second, the synthetic test traffic does not always reflect the

“on-the-wire” production traffic, as the characteristics of real

production traffic are dependent on a wide variety of factors,

such as running applications, traffic loads, flow types (e.g.,

short lived or long lived), and the combination of these factors,

which is hard to capture with traffic purely generated from

static models. For instance, the performance related issues

of network functions are closely bound by varying live net-

work throughput [27]; the distributed denial-of-service attack

(DDoS) could only be detected by considering a large group

of flows collaboratively. Last, though injecting test traffic to an

“offline” data plane (by current approaches) will not disrupt

the production system, it may not produce the same results

as the network testing performed against the real production

system directly, due to the lack of considering necessary

dynamic state of the production system.

Testing network policies in a live production environment

is attractive, as production traffic captures the most exact,

realistic dynamic state as well as vulnerabilities of the system

that the model-based testing tools cannot provide. However,

testing network policies against a real production system is

also restricted: It may damage and/or cause the production

system to be unavailable. It becomes more problematic in a

cloud environment where underlying network infrastructures

is shared among multiple tenants, as network testing carried

out by one tenant could affect unrelated tenants as well. For

instance, one incorrect input destroyed the s3 subsystems

service impacting all AWS’s s3 customers in the Northern

Virginia Region [21]; The failures of data plane caused by one

tenant could compromise other tenants on the same data plane

(e.g., in cloud, multiple VMs from different tenants share the

same underlying network infrastructure) [16]; A network stress

test, with high traffic loads, could impact the performance of

other tenants sharing the same network infrastructure.

NF1
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NF3

Internal 
VMs

Production System Shadow System

External Traffic

1. SDN-based Live Cloning
3. Test Traffic 

Generator

2. Forwarding Pipe

Software Gateway

Software Gateway

Fig. 2: ShadeNF Architecture.

III. DESIGN

To address the challenges (in Section II-B), ShadeNF re-

alizes online network testing for in-cloud network functions

in a production-like environment, without disrupting the live

production system. In designing and developing ShadeNF, we

broadly re-visit traditional wisdom in the domain of network

testing and shadow system creation. Meanwhile, we identify

and address key challenges of existing techniques in the SDN-

enabled NFV scenario. Figure 2 illustrates the overview of

ShadeNF’s architecture, consisting of three main components:

The first component, SDN-based live cloning, seamlessly

and consistently clones network functions (to be tested) to

the shadow environment, and ensures isolation and security

between the production and shadow systems. The second com-

ponent, a programmable forwarding plane, selectively mirrors

and redirects the live production traffic from the production

system to the shadow system as the test traffic. The third

component, a scaled traffic generator, further generates and

injects synthetic test traffic to trigger policy-relevant behaviors

that are not covered by the production traffic. We elaborate on

the design of these components in the following.

A. SDN-based Live Cloning

To test network policies, ShadeNF needs to provide a copy
(i.e., snapshot) of the network functions (to be tested) from

the production system to the shadow system. The goal is to

produce the same testing results in the shadow system, as

performed against the production system. As a production

system comprises chained, dependent network functions (i.e.,

in VMs) and they may complete their snapshots at different

times, ShadeNF needs to further provide a consistent copy of

these network functions — to avoid any illegal state of network

functions caused by the process of shadow system creation. To

this end, ShadeNF proposes a new SDN-based live, consistent

snapshot approach.

A consistent snapshot ensures that the shadow system

correctly captures the state of to-be-tested network functions

(from the production system) at a logical instant of time. As

shown in Figure 3, if there is no consistent snapshot, VM1

— resuming from its snapshot after time t1 — may send a

packet(s), p, to its next-hop VM2, which is still in its snapshot

status (note that both VM1 and VM2 reside in the production

system). This causes inconsistency: VM1’ — the snapshot of
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Fig. 3: Demonstration of inconsistent packets.

VM1 at time t1 — does not send p (as it has been snapshotted

before VM1 sends p), while VM2’ — the snapshot of VM2

at time t2 — already received p. Such inconsistency could

cause incorrect state dependency between network functions.

For example, in Figure 1, it is likely that after an inconsistent

snapshot, the state of bad connection in the light IPS shows

9, but the heavy IPS is already triggered (supposedly by 10

bad connections). Thus, to correctly perform network testing,

it is necessary to ensure a consistent snapshot.

Several distributed snapshot techniques have been proposed

[28], [37], [42]. Typically, to ensure consistency, any packets

sent by source VMs that have completed their snapshots (e.g.,

VM1) must not be delivered to destination VMs that have

not completed their snapshots (e.g., VM2). These packets

are referred to as inconsistent packets. One straightforward

approach to deal with the inconsistent packets is to simply drop

them [37] and then rely on TCP retransmission when VMs

resume from snapshot. However, this approach could greatly

affect transport performance (due to TCP retransmission),

especially for network-intensive workloads. To mitigate this,

another approach is to buffer inconsistent packets on the

destination VMs side [42]. However, this approach requires

marking the network header of inconsistent packets on the

source VMs side, incurring non-trivial changes to the VMs’

software (i.e., network protocol stack), which is less practical.

By leveraging programmability of an SDN-enabled NFV

network, ShadeNF addresses this problem with a new consis-

tent snapshot approach that minimizes performance overhead

during VMs snapshot while without any modifications to

VMs’ software and legacy network flows. Specifically, as

shown in Figure 4, each VM (being snapshotted) resides in

one of two states when a snapshot starts — in snapshot and

post snapshot. Initially, all involved VMs are in in snapshot,
and later transfer to post snapshot after completing their

snapshots. To conduct the snapshot process, ShadeNF involves

two main components: an SDN controller and a snapshot

controller. The SDN controller maintains state information

of all involved VMs, while the snapshot controller (e.g.,

QEMU) executes the actual snapshot for a particular VM.

At the end of a snapshot, the snapshot controller pauses a

VM for a short time to save the last dirty memory, similar

to traditional snapshot/migration processes. Differently, it also

VM1

OVS1

VM2

OVS2

post_snapshot in_snapshot

SDN Controller

Snapshot
controller

Snapshot
controller

Buffered

Packets to VM2 Packets to 
VM1

Packets 
from VM1

Buffered

State Info:
VM1: post_snapshot
VM2: in_snapshot

Fig. 4: ShadeNF’s live, consistent snapshot.

sends a “state-change” message to notify the SDN controller to

update its state (i.e., from in snapshot to post snapshot). After

receiving the acknowledge message from the SDN controller,

the snapshot controller resumes to run the VM. Figure 4 shows

a concrete example where VM1 enters post snapshot, while

VM2 is still in in snapshot.
To avoid costly TCP retransmission, inconsistent packets

(e.g., packets from VM1 to VM2 in Figure 4) are buffered

(instead of dropped). ShadeNF buffers the inconsistent packets

on the source VMs side — more specifically, on the SDN-

enabled virtual switches to which VMs are connected (e.g.,

OVS1 and OVS2 in Figure 4). In fact, once the source VM’s

snapshot controller sends the “state-change” message to the

SDN controller (as stated above), the SDN controller not only

changes the source VM’s snapshot state, but also populates the

VM’s buffering flow rules in its virtual switch. The buffering

flow rules identify all the flows that will go from the source

VM to any in snapshot VMs, and redirect such flows to a

local buffer (e.g., Buffer1 in Figure 3). Later, when any of

these destination VMs complete their snapshots, the SDN

controller will be notified by their “state-change” messages;

the above buffering flow rules will be cleaned up, and the

buffered packets will be delivered to the destination VMs, thus

reducing TCP retransmission.

Further, packets from in snapshot VMs to post snapshot
VMs are allowed to be delivered (e.g., packets from VM2

to VM1 in Figure 4). Though, these packets do not cause

snapshot inconsistency in terms of semantics of application-

level message [37], they are not captured in the shadow

systems. It means that when snapshot VMs resume running,

this results in packet loss for UDP connections or backoff
for TCP connections. To mitigate such performance over-

head, ShadeNF buffers these packets as well (e.g., Buffer2

in Figure 3). As an example in Figure 4, the VM2 → VM1

packets are both delivered to VM1 and buffered on the VM2

side. The buffered traffic will be delivered as a batch to

the snapshot of VM1 (i.e., VM1’) in the beginning before

conducting a network testing.

Last, the live cloning “pauses” source VMs in the pro-

duction system for a short time during the last iteration.

Though the pausing time is usually small (e.g., hundreds of

milliseconds), it does bring certain performance overhead to

the production system (e.g., packets may be lost during the

pausing time). To mitigate the negative performance impact
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to the production system, ShadeNF buffers packets sent to a

paused VM during snapshotting (e.g., Buffer0 in Figure 3), in-

stead of simply dropping them (like what existing approaches

[37], [42] do). When the original VMs in the production

system resumes running, the buffered packets will be delivered

to the VMs. Thus, the production system will not observe

packet loss (for UDPs) and not need retransmission (for TCPs).

To sum up, ShadeNF ensures a consistent snapshot for

involved distributed network function VMs, while mitigating

the performance impact by extensively buffering packets. As

ShadeNF adopts a centralized SDN controller to keep track of

VMs (and packets) state, no modifications to VMs software

(e.g., network protocol stack) and network flows (e.g., adding

marker packets) are required.

B. Programmable Forwarding Plane

Existing network virtualization technique provides a well-

established virtualization abstraction [13], [41], where isolated

virtual networks can be created for different (sub-)tenants

without needing to know the underlying hardware details.

Safety. The shadow system must be isolated in the sense that

the testing activities of the shadow system should not interfere

with the production system. To achieve this goal, ShadeNF

creates a privileged sub-tenant to host the shadow system. The

cloud platform provides numerous features to allow isolation

and security among multiple (sub-)tenants. ShadeNF trusts

the cloud platform to implement such isolation mechanisms

correctly. Further, ShadeNF only allows local cloud service

providers to access the privileged sub-tenant, running trans-

parently from the operations of production tenants.

As mentioned above, to allow the shadow system to capture

the dynamics of the production workloads, it is desired to bring

the production traffic to the shadow system (as test traffic),

where it can be tunneled through a sequence of network

functions under test. However, to ensure strong isolation,

the shadow system and production system are purposely

placed in separated sub-tenants, and hence cannot commu-

nicate with each other by default (i.e., they have different

network namespaces and security groups). At the surface, this

seems like a routing problem, however in practice, ShadeNF

must overcome several constraints of cloud networking, while

guaranteeing isolation and security of this traffic forwarding.

To this end, ShadeNF creates a new programmable forwarding
plane that can selectively steer the production traffic to the

shadow system, while preserving the safety of the whole

system. We split the design of ShadeNF’s programmable

forwarding plane into two parts — (1) flow identification, and

(2) forwarding pipes:

Flow Identification. ShadeNF should first locate the desired
live production flows in the production system, and then

mirror and steer such flows to the shadow system (as the

test traffic). ShadeNF considers three scenarios to locate the

desired production flows for a particular network function

under test: (a) If the network function’s previous hops are

part of the shadow system (i.e., the previous hops are under

NF1 NF3

NF2 NF4OVS2

Control Plane

OVS1 OVS3

OVS4

Fig. 5: ShadeNF’s control plane and data plane.

test), no production traffic will be selected. Instead, ShadeNF

forwards the traffic generated by these previous hops in the

shadow system to this network function, as such traffic in the

shadow system reflects the latest updates of network policies.

(b) If its previous hops are not part of the shadow system,

ShadeNF needs to mirror their production flows and bring

them to the shadow system. (c) If this network function is

newly added (to the shadow system for testing), it could fit in

either of the above two scenarios, depending on the insertion

position — if it is inserted after the network functions under

test, Scenario (a) applies, and vice versa.

In Scenario (a), ShadeNF needs to identify all the previous

hops in the shadow system (given the network topology), and

then to forward their traffic to the network function under

test. In Scenario (b), in contrast, ShadeNF needs to bring

the live production flows from the production system to the

shadow system. More specifically, ShadeNF mirrors the traffic

on the entry points of these previous hops: ShadeNF assumes

a typical cloud setup for VMs network — every tenant VM

is connected to an SDN-enabled virtual switch (e.g., Open

vSwitch) 1; inbound/outbound traffic of the VM traverses this

virtual switch. Hence, this virtual switch becomes the entry

point of the VM. ShadeNF mirrors the production traffic on

these entry points, and redirects the mirrored traffic to the

shadow system through forwarding pipes (introduced below).

Forwarding Pipes. ShadeNF creates forwarding pipes to

either steer traffic through a sequence of network functions in

the shadow system (i.e., in Scenario (a)), or bring the traffic

from the production system to the shadow system (i.e., in

Scenario (b)). A key technique that underpins forwarding pipes

is forwarding chain [44]:

The basic unit of a forwarding chain consists of three

components: (1) the network function, (2) its previous hop

(i.e., a virtual switch) where network traffic comes from, and

(3) its own virtual switch where network traffic enters and

leaves the network function. As illustrated in Figure 5, for a

flow that traverses two network functions, NF2 and NF3, the

first chain {OVS prev, OVS2 in, NF2} brings the flows to

NF2, and the second chain {OVS2 out, OVS3 in, NF3} takes

it to NF3. Note that, the OVS2 in and OVS2 out are the same

virtual switch (i.e., OVS2) where NF2 is connected, repre-

senting inbound and outbound traffic to/from NF2 separately.

1The benefit of this setup is that numerous network security features to
allow multi-tenancy, isolation, and security can be easily realized through
this virtual switch.
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OVS prev is the previous hop of NF2. By installing flow rules

in these virtual switches, ShadeNF delicately stitches all the

involved forwarding units, and constructs a forwarding pipe

as desired (e.g., a forwarding path from NF2 to NF3).

With forwarding chain, it is feasible to create a forwarding

pipe for the above Scenario (a): ShadeNF realizes a central

SDN controller that controls all virtual switches. These vir-

tual switches as well as their associated network functions

constitute the forwarding plane as illustrated in Figure 5. A

specific forwarding pipe can be dynamically programmed by

inserting flow rules in the related virtual switches.

However, an issue arises for Scenario (b): The previous hops

of a network function (under test) reside in the production

system, which are totally separated from the shadow system

— strict isolation mechanisms are provided by the cloud

platform between two (sub-)tenants. To establish a forwarding

pipe while maintaining safety for the production system,

ShadeNF uses a virtual gateway (i.e., a set of flow rules and

constraints associated with an existing virtual switch) sitting at

the edge of the shadow system 2. To ensure that the production

system is isolated and protected from the shadow system, the

virtual gateway only allows traffic flows in the “production-

to-shadow” direction, but never allows the reverse traffic

(i.e., “shadow-to-production”). Hence, any traffic generated by

testing activities do not affect the production system. Further,

to ensure security and isolation among multiple cloud tenants,

this virtual gateway is created within an individual tenant’s

network space (i.e., a virtual isolated network domain reserved

to a cloud tenant), and thus invisible to other users.

Essentially, the virtual gateway unidirectionally connects

the data plane of the production system and the shadow

system. Hence, to create the forwarding pipe in Scenario

(b), ShadeNF’s SDN controller first mirrors and redirects the

desired production traffic from the virtual switches of the

production network functions to the virtual gateway (e.g., the

first virtual switch in the shadow system); and then steers

the traffic along the forwarding chains in the shadow system.

Again, because of the unidirectional connection, no traffic

flows will escape from the shadow system.

C. Scaled Test Traffic Generator

So far, ShadeNF can test the most critical behaviors of net-

work functions triggered by live production traffic. However,

with pure production traffic as test traffic, ShadeNF may not

explore cases that trigger all possible network policies under

test. To provide a broader test coverage, ShadeNF’s scaled test

traffic generator generates synthetic test traffic to test network

polices not triggered by the production traffic.

ShadeNF advances traditional model-based testing ap-

proaches by considering the characteristics of real production

traffic: The generation of the test traffic follows the patterns of

the production traffic, hence approximating the real production

traffic. More specifically, ShadeNF keeps track of the number

2In practice, ShadeNF re-uses the last-hop virtual switch of the production
system, where the production flows exit the production system, to serve as
the virtual gateway, thus avoiding unnecessary forwarding hops.

of network flows, distribution of network protocols, protocol-

specific features (e.g., status of flows), and the size of packet

payloads. These network patterns are recorded by the entry

point virtual switch of each network function under test, and

fed to ShadeNF’s traffic generator, which in turn populates the

enhanced test traffic with the production traffic patterns. For

example, instead of generating a single network flow given

a protocol [31], ShadeNF’s traffic generator creates multiple

network flows in proportion to the protocol’s flow number

in the production traffic. Instead of adopting a fixed packet

payload, the traffic generator assigns various packet sizes to

different test flows based on the payload size distribution of

the production traffic.

The scaled test traffic generator, running within VMs, re-

sides in another sub-tenant, other than the production system

and the shadow system for good isolation. ShadeNF uses

forwarding pipes stated above to bring the generated test traffic

to the network functions in the shadow system.

Test Coverage. ShadeNF intends to be a practical solution for

testing most critical behaviors of network functions, triggered

by live production traffic and synthetic traffic. Like most

efforts in this domain [31], [48], ShadeNF is incomplete in

that it is not designed to explore all possible test cases. For

example, it is not designed to exhaust all possible states for an

“infinite-state” system. Instead, ShadeNF allows cloud tenants

to rapidly explore the most critical behaviors of network

functions by capturing the dynamics of the production system

and the production workloads. ShadeNF is complementary to

the approaches which provide full test coverage (e.g., header

space analysis [39]).

D. Test Resolution

ShadeNF’s test resolution follows a model-based testing

[31], [51], applied to actively test the blackbox behaviors of

a system. It compares the observed behaviors of the shadow

system under test (e.g., inbound and outbound network traffic

of the network functions) to the expected behaviors instructed

by the network policies (i.e., a traffic flow must traverse the

ports mandated by the network policies).

Unlike existing approaches [31], [51] that intentionally craft

a system to reach a certain known state (e.g., firewall rules,

reject groups, and number of bad connections), ShadeNF uses

the live production traffic, which drives a system to a real-
yet-unpredictable state. To make such state traceable, ShadeNF

uses observed traffic behaviors to retrace internal state changes

of network functions (e.g., a new routing decision of one

network functions indicates an internal state change, with

which we can retrace its previous state, and so forth). However,

we notice that, to have better test resolution, it is more desired

to have network functions report internal state information

automatically. In fact, a lot of internal states are logged by

system software, which can be dumped through an interface.

We leave this for future study.

To conduct test resolution, the entry point virtual switches

of networking functions (under test) monitor both inbound and

outbound traffic, and log such information (e.g., via tcpdump).
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ShadeNF inspects the logs to check whether a traffic flow has

traversed the ports instructed by the network policies (given

the updated network polices and state information of involved

network functions). If so, it returns with success; otherwise, a

test failure (i.e., policy violation) will be reported.

E. Putting Together

ShadeNF’s high-level operation policies allow tenants to re-

quest the shadow testing system in a customizable manner. The

following operation information must be specified by tenants

prior to using ShadeNF: (a) network functions to be tested

and their connection topology (these network functions are not

necessarily connected), (b) the existing/new/updated network

policies of these network functions to be tested (i.e., policy

specification), and (c) test coverage (e.g., using production

traffic only or including synthetic traffic, and test duration).

ShadeNF provides an interface for tenants to submit these

information to the cloud platform, and ShadeNF, accordingly,

parses the policies and deploys the testing services.

Specifically, the platform first makes a live clone of in-

volved network functions specified by the tenants. Second, the

platform starts the testing process by creating the forwarding

pipes which locate, mirror and redirect the production traffic to

the shadow system. While conducting testing, the entry point

virtual switches log the inbound/outbound traffic, used for (i)

traffic pattern characterization, and (ii) test resolution. Depend-

ing on whether tenants require synthetic traffic, ShadeNF’s

traffic generator may work on scaled test traffic. Last, along

with the testing process, ShadeNF carries out the online test

resolution to locate sources of violations.

IV. IMPLEMENTATION

We have implemented a prototype of ShadeNF (∼3,000

LOC) on top of the OpenStack cloud platform, with its

Newton release [15]. We have developed an SDN controller

(using Python) as the control plane for both live cloning

and forwarding plane. ShadeNF’s SDN-based live snapshot

approach consists of two main components: We modified the

QEMU hypervisor with live snapshot support to serve as the

snapshot controller (for each VM). The snapshot controller

manages the lifecycle of a VM’s live snapshot, while the

SDN controller programs corresponding virtual switches to

buffer/deliver packets. ShadeNF repurposes OVS’s mirroring

functions to redirect production traffic to the shadow system

for the forwarding plane. For test resolution, ShadeNF employs

a context-dependent traffic generator [31] to generate the

baseline test traffic. ShadeNF further uses Scapy [17] to

convert such baseline traffic to scaled test traffic with varying

parameters such as sizes of packet payload, connection paral-

lelism, protocols, and length of flows. These parameters can

be configured to follow the production traffic patterns obtained

from entry point virtual switches of network functions. We

also implemented test resolution, which examines the observed

behaviors from the shadow system with the expected behaviors

extracted from network policy specification.

V. EVALUATION

We have deployed and evaluated ShadeNF in a real cloud

testbed with OpenStack Newton release. Our test-bed con-

tained 16 server-grade physical machines each with two Intel

Xeon quad-core processors and 32 GB memory. Each machine

was installed one Gigabit Ethernet card, connecting to a

Gigabit switch. In this section, we show that (1) ShadeNF’s

SDN-based live cloning efficiently captures the dynamics of

a production system at scale with low performance overhead;

(2) ShadeNF generates test traffic with broader coverage; and

(3) ShadeNF effectively detects a range of policy violations.

A. SDN-based Live Cloning

To evaluate our SDN-based live, consistent cloning, we

first used a “two-VM” communication case as illustrated in

Figure 3. Each VM ran Ubuntu 16.04, with the same vCPU

number (i.e., 2 vCPUs) but different memory sizes — VM1

with 2 GB and VM2 with 4 GB. Thus, each VM would take

different amount of time to complete its live snapshot. We

started the live snapshot for both VMs at the same time; VM1

would complete the snapshot ahead of VM2. We used both

UDP and TCP streams, and compared three approaches: (1)

a non-consistent snapshot, (2) a typical consistency approach

[42], and (3) ShadeNF’s SDN-based live cloning approach.

UDP Stream. VM1 communicated with VM2 in a bidirec-

tional manner — VM1 sent ∼1000 UDP packets per second

to VM2; VM2 sent ∼1,000 UDP packets per second to VM1.

We measured lost packets and inconsistent packets (the less

the better). As stated in Section III-A, lost packets occur when

(1) the destination VM is paused (i.e., the last step of a live

snapshot), or (2) packets are sent by an in snapshot VM to a

post snapshot VM; inconsistent packets occur when packets

are sent by a post snapshot VM to an in snapshot VM. Table

I shows the number of lost and inconsistent packets separately

for each approach.

(1) Non-consistent snapshot: A non-consistent snapshot

leads to about 270 packet total losses for each UDP stream in

the two-VM production system. This is caused by the snapshot

“pause” time: It matches our observation that the average VM

pause time is about 300 ms, while the UDP transmit rate

is 1,000. In the shadow system, there is a large number of

inconsistent packets for stream VM1 → VM2 (e.g., 897 in

Table I, Column 3). These inconsistent packets were sent by

VM1 during the time interval (t1, t2) (Figure 3), resulting in

inconsistency between VM1 and VM2 snapshots. In addition,

we observed a large number of packets losses from stream

VM2 → VM1 (e.g., 1045 in Table 1, Column 3). These packets

were sent by VM2 during the same time interval (t1, t2); they

will never be sent by VM2’s snapshot, and will not be received

by VM1’s snapshot, resulting in packet losses.

(2) A typical consistent snapshot [42]: Under this condition,

packet losses, in the production system, only happen on stream

VM2 → VM1 (e.g., 345 in Table I, Column 4), caused by

the pause of VM2 during its snapshot. There are no packet

losses for stream VM1 → VM2, because packets sent by VM1,
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Non-consistency Non-consistency Consistency [42] Consistency [42] ShadeNF ShadeNF

Production/Shadow Production Shadow Production Shadow Production Shadow

Loss: VM1 → VM2 286 0 0 0 0 0
Loss: VM2 → VM1 267 1045 345 1238 0 0
Incon: VM1 → VM2 - 897 - 0 - 0
Incon: VM2 → VM1 - 0 - 0 - 0

TABLE I: Loss and inconsistent packets for the UDP case.
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Fig. 6: TCP throughput impact.

while VM2 was paused, were buffered, and these packets were

delivered to VM2 when it resumed. In the shadow system,

there are no inconsistent packets observed, because, again,

the inconsistent packets were buffered during the snapshot of

VM2. But, we do observe a large number of packet losses on

stream VM2 → VM1 (e.g., 1238 in Table I, Column 5). It is

because of the same reason (as above): these packets were sent

by VM2 during (t1, t2), and never sent by VM2’s snapshot in

the shadow system.

(3) ShadeNF’s consistent snapshot: With ShadeNF’s snap-

shot, in the production system, there are no packet losses for

both stream VM2 → VM1 and stream VM1 → VM2 (e.g., in

Table I, Column 6), because while VM1 was paused at the end

of its snapshot, the packets to VM1 were buffered by ShadeNF.

In the shadow system, there are no inconsistent packets ob-

served, because all inconsistent packets were buffered during

the snapshot of VM2. Moreover, in the shadow system, we

do not observe packet losses from stream VM2 → VM1. It

is because, again, these packets, sent by VM2 during (t1, t2),

were buffered by ShadeNF and sent by VM2’s snapshot in the

shadow system.

TCP Stream. In the same setup as shown in Figure 3, VM1

communicated with VM2 via TCP: VM1 kept sending HTTP

requests, 1,000 concurrent requests, to VM2 which ran a web

server. For each HTTP request, VM2 sent data back to VM1.

Figure 6 shows the impact on TCP throughput under three

approaches: (1) no-snapshot, (2) a normal snapshot approach

[42], and (3) ShadeNF. As in approach (2), the packets sent

from VM2 to VM1 are not buffered, there is TCP backoff

when the two VMs’ snapshots resume in the shadow system.

As shown in Figure 6, it may take 2∼3 seconds TCP backoff

time, depending on how many packets were dropped during

(t1, t2) (see Figure 3. In contrast, as ShadeNF buffers these

packets, no TCP backoff is noticed in Figure 6.

Note that, ShadeNF does not guarantee avoiding packet

losses completely, as there may be “on-the-wire” packets when

Fig. 7: Scalability of ShadeNF’s live cloning.

the whole snapshot completes (in our experiments, we did not

observe any packet losses). But, ShadeNF can greatly reduce

packet losses by buffering packets extensively as shown above.

More importantly, ShadeNF does not require any modifications

to VMs’ software and legacy network flows.

Scalability. We evaluate how ShadeNF’s live, consistent

cloning approach scales with the topology size. We use 8

physical machines for the production system, while the rest

8 physical machines for the shadow system. We run the

above “two-VM” TCP case, but increase the pairs of the two

communicating VMs from 1 to 28 pairs — VMs are evenly

distributed among the 16 physical hosts for the production and

shadow system respectively. In each case, ShadeNF conducts

live snapshot for all the VMs at the same time.

As illustrated in Figure 7, as the pair number increases,

the averaged downtime and total cloning time for each VM

increases. More specifically, the downtime increases slightly

from around 300 ms (i.e., the 1-pair case) to 470 ms (i.e.,

the 28-pair case). This is because, as the number of VM

increases, the contention of mutiple cloning processes for

the underlying physical resources increases, which slightly

degrades the cloning efficiency for a single VM — each

VM pauses for longer time during the last iteration. We

also observe that as the pair number increases, the averaged

cloning total time for each VM increases almost linearly from

around 30 seconds (i.e., the 1-pair case) to 240 seconds (i.e.,

the 28-pair case). This is mainly because all VMs on the

same host share the limited network bandwidth while cloning

(e.g., 1 Gb in our setup) — as we increase the number of

VMs, the network bandwidth used for a single VM decreases

accordingly, resulting in longer cloning time. Notice that the

total cloning time can be significantly reduced when we use

higher bandwidth network such as 10/40 Gb.

Overall, when we scale up the number of VMs in the

production system, the downtime (i.e., the major performance

impact as VMs pause during downtime) for a single VM
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increases at a reasonable rate. The total cloning time can be

further reduced using a high-bandwidth network setup.

B. ShadeNF Test Traffic Generator

Next, we evaluate how ShadeNF scales when generating

test traffic. We chose the context-dependent traffic generator

[31] as the baseline (with policy complexity of 9), which

follows a one-packet-per-test manner. In contrast, ShadeNF

can generate test traffic with varying parameters such as

payload size, flow length (i.e., in terms of packet number),

and connection parallelism. As shown in Figure 8, ShadeNF

brings little overhead in generating the test traffic. The extra

overhead lies in the conversion from the baseline test traffic

to scaled test traffic considering different parameters. More

specifically, ShadeNF takes less than 2% extra time for a

single flow with varying payload sizes (Figure 8a) and with

varying packet numbers (Figure 8b). It takes less than 2x time

to generate 64x connections (Figure 8c).

C. Use Cases: Finding Violations

To evaluate the effectiveness of ShadeNF in finding policy

violations, we created a production system with OpenStack,

based on a typical business-to-customer network [5], as illus-

trated in Figure 9a.

Specifically, the production system contains a first tier of

five web servers (VMs), each of which has two network

interfaces: a public interface and a private interface. The public

interface uses Network Address Translation (NAT network

function) to allow external clients to access. To reach these

web servers, the external traffic (issued by ten client VMs,

not illustrated in Figure 9a) needs to traverse a sequence of

network functions including a firewall, a light IPS, and/or a

heavy IPS. The private interface of the web servers uses a

private address and gives certain accesses to the ten application

servers (VMs) through a monitor (restricting web access, e.g.,

application server A cannot access ABC.com). To improve

web performance, we use a proxy network function next to

the monitor. The application servers, in turn, have at least

two network interfaces: one for communication with the web

servers and one for communication with the five database

servers. The network functions sitting between application

severs and database servers are the same as above: a proxy

and a monitor. The key polices deployed in these network

functions are highlighted in Table II Column 2.

We ran real world workloads in both web servers (Apache

servers [3]) and database servers (MySQL and MongoDB).

In application servers, we ran ApacheBench [2] to generate

network traffic to web servers, while sysbench [22] and YCSB

[24] to generate I/O traffic to database servers. We used

Shorewall [18] as a NAT, a firewall and a monitor, Squid [20]

as a proxy, and Snort [19] as an IPS.

At a certain point (e.g., requested by cloud tenants), we

conducted a live, consistent snapshot of all network functions

in Figure 9a, and created a shadow system for network testing

as shown in Figure 9b: The shadow system consists of three

separate network function chains. In the shadow system, we

injected a variety of failures (i.e., violations of policies) in

different network functions under test, as highlighted in Table

II, Column 3 (some of the violations were from [31]). To locate

such violations, we used both production traffic brought from

the production system and test traffic generated by ShadeNF’s

test traffic generator. In all scenarios, ShadeNF successfully

localized the failures. Table II, Column 4 specifies under which

situation (e.g., production traffic or test traffic), the failures

were located.

As we have observe that the production traffic can trigger all

of the violations listed in Table II, demonstrating that ShadeNF

serves as a practical solution for verifying critical behaviors

of network functions.

VI. RELATED WORK

A large body of literature focuses on network testing, espe-

cially on checking reachability [32], [38], [39], [43], [45], [49],

[52], [53]. They check correctness in networks with stateless

switches and routers, and do not capture the stateful network

behaviors. Recent work starts to model complex, stateful

network [30], [31], [36], [50]. The work in [36] formalized

middlebox forwarding behaviors. FlowTest [30] models the

entire data plane. BUZZ [31] further checks policies in stateful

data planes with an expressive model considering context-

dependent network policies. Symnet [50] develops models

written in Haskell to capture NAT semantics. Along the same

direction, ShadeNF focuses on conducting practical network

testing by capturing the dynamics of live production systems

using live production traffic. ShadeNF is complementary to

these efforts in that it can leverage these modeling tools to

generate synthetic test traffic with better test coverage such as

ShadeNF’s scaled test traffic generator.

To mimic an online/production system, it is common to

use simulation [12], emulation [11] and shadow configuration

[26]. The key difference between ShadeNF and such earlier

efforts is that, instead of using static, offline configurations,

ShadeNF captures the dynamic state of a complex production

system, and creates a production-like test environment. The

work closest to ShadeNF is POTASSIUM [42], which provides

penetration testing as a service by creating an isolated system

in cloud. However, our work is different from POTASSIUM

in both domain characteristic (network function testing) and

techniques (SDN-based live cloning and live production traffic

forwarding).

There are existing efforts in consistent checkpointing [29],

[37], [42]. The work in [37] used live migration to realize live

snapshots by implementing a message coloring approach in

routers to realize consistent snapshots. However, they do not

buffer packets leading to inconsistent snapshots, but simply

drop these packets. The work in [29], [42] took a snapshot

using a Copy-On-Write approach via coloring and buffering

packets that could lead to inconsistent snapshots. However,

these approaches need to explicitly mark packet headers and

thus require modifying VMs’ software (i.e., TCP/IP software

stack). ShadeNF advances such approaches by extensively
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Fig. 8: Test traffic generation latency: ShadeNF vs. baseline.
Network Policies Violations Detected by
Functions

Firewall Allow traffic from (1) Mistakenly place client1’ IP to the “reject” group Production Traffic
certain IP addresses (2) Mistakenly place client2’ IP to the “accept” group Production Traffic

(3) Conflicting firewall rules: Rule1, if internal
connects to external IP, allow IP to access any ports;
Rule 2: block any external access to internal 443 [31]. Production Traffic

NAT Translates private addresses (1) Cascaded NATs using IPRewrite [31] Production Traffic
into public addresses (2) Mistakenly translate to in accessible IP addresses Production Traffic

Light IPS If Bad conn# > 10, (1) L-IPS miscounts by summing all the hosts [31] Production Traffic
go to Heavy IPS (2) The threshold is incorrect Production Traffic
Otherwise, allow (3) The destination is not H-IPS Production Traffic

Heavy IPS Match payload signature (1) Missing forwarding rules Production Traffic
Monitor Similar to Firewall (1) Mistakenly place client1’ IP to the “reject” group Production Traffic

(2) Mistakenly place client2’ IP to the “accept” group Production Traffic
(3) Conflicting firewall rules: Rule1, if internal
connects to external IP, allow IP to access any ports;
Rule 2: block any external access to internal 443 [31]. Production Traffic
(4) Application server1 cannot access web1 Production Traffic

TABLE II: Network policies and violations.

External 
Traffic

Firewall

Light IPS
NAT Heavy IPS

WebServer WebServer

Proxy1 Monitor1

AppServer

Proxy2 Monitor2

AppServer

DbServer DbServer

(a) Production system.
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Production 
Traffic

Production 
Traffic

Production 
Traffic

Production 
Traffic

(b) Shadow system.

Fig. 9: A “business-to-customer” network system.

buffering packets, both achieving consistent snapshot and mit-

igating the TCP backoff issue. Further, by taking advantage of

SDN techniques, ShadeNF’s live consistent snapshot approach

does not need any modifications to any VMs software and

legacy network flows, which is more pragmatic.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented ShadeNF, an online plat-

form for testing in-cloud network functions in a production-

like environment without disrupting the real production sys-

tem. In designing and implementing ShadeNF, we contributed

new, fundamental techniques in supporting such a testing

platform including an SDN-based live, consistent snapshot

approach, a programmable forwarding plane, and a scaled test

traffic generator. Our evaluation results show that ShadeNF

successfully captures the dynamics of the production system at

scale with reduced overhead, and effectively localizes a range

of policy violations under a real-world network system.

ShadeNF intends to be a practical solution for testing most

critical behaviors of network functions, triggered by produc-

tion workloads traffic. It trades completeness for practicality.

It is incomplete in that it cannot afford exploring all possible

test cases (with pure production traffic). However, this is

a worthwhile trade-off, as the online testing platform will

in return allow cloud users to rapidly explore the critical

behaviors of network functions and perform further in-depth

analysis or quick actions in response to the results. This is a de-

sired feature in today’s SDN-enable NFV environment where

network policies change quickly over time and requires an

online, light-weight mechanism for network testing. ShadeNF,

along with the three fundamental techniques presented in this

paper, serves as the building block for network function testing

as a service in the multi-tenancy cloud. We believe, ShadeNF

can be extended to check more complex scenarios for context-

dependent network functions. We also notice that to perform

more precise network testing, we need to consider application

domain knowledge, which we leave for future work.
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