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Abstract
In cloud-native environments, containers are often deployed

within lightweight virtual machines (VMs) to ensure strong

security isolation and privacy protection. With the grow-

ing demand for customized cloud services, third-party ven-

dors are turning to infrastructure-as-a-service (IaaS) cloud

providers to build their own cloud-native platforms, necessi-

tating the need to run a VM or a guest that hosts containers

inside another VM instance leased from an IaaS cloud. State-

of-the-art nested virtualization in the x86 architecture relies

heavily on the host hypervisor to expose hardware virtualiza-

tion support to the guest hypervisor, not only complicating

cloud management but also raising concerns about an in-

creased attack surface at the host hypervisor.

This paper presents the design and implementation of

PVM, a high-performance guest hypervisor for KVM that is

transparent to the host hypervisor and assumes no hardware

virtualization support. PVM leverages two key designs: 1) a

minimal shared memory region between the guest and guest

hypervisor to facilitate state transition between different

privilege levels and 2) an efficient shadow page table design

to reduce the cost of memory virtualization. PVM has been

adopted by Alibaba Cloud for hosting tens of thousands of

secure containers on a daily basis. Our experiments demon-

strate that PVM significantly outperforms current nested vir-

tualization in KVM for memory virtualization, particularly

for concurrent workloads, while maintaining comparable

performance in CPU and I/O virtualization.
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1 Introduction
Containers have gained widespread popularity for build-

ing and deploying applications in cloud-native data centers

owing to their flexibility, portability, minimal resource uti-

lization, and excellent scalability. Unlike traditional virtual

machine (VM)-based virtualization[23, 32], containers share

the kernel with the host OS and therefore do not offer the

same level of isolation between hosted applications, opening

up opportunities for attackers to cause information leak-

age [53], privilege escalation [45], and denial of services [11].

Although there has been extensive research dedicated to

improving container isolation and security, including op-

erating system (OS)-level mechanisms such as namespaces,
capabilities [34], seccomp [28], and apparmor [33], as well as
user-level kernels like gVisor [10, 39], VM-based isolation

methods such as Kata Containers [6] and FireCracker [15]

remain the preferred and widely adopted choice in produc-

tion systems. These VM-based solutions deploy containers

with separate OS kernels within lightweight VMs, offering

robust isolation and compatibility with legacy applications.

The additional layer of indirection at the VM hypervi-
sor, however, incurs non-negligible overhead. Besides an

enlarged per-container memory footprint, a primary source

of overhead is the crossing of multiple layers of the virtual-

ization stack (i.e., world switches) for CPU, memory, and I/O

virtualization [19]. As the demand for user-defined, private

cloud-native computing continues to grow, there is a need

for running lightweight VMs within VM instances leased
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from public infrastructure-as-a-service (IaaS) clouds. For ex-

ample, running Kata containers with Kubernetes [22] in the

cloud requires nested VMs, allowing for greater isolation,

more flexible, and elastic Kubernetes cluster management

but resulting in even higher runtime overhead.

This paper analyzes state-of-the-art nested virtualization

approaches and identifies a fundamental tradeoff – while

hardware virtualization support, such as Intel VT-x [40] and

AMD-V [47], offers superior performance and lower over-

head compared with software-based emulation for single-

level virtualization, it may result in sub-optimal performance

and excessive (expensive) traps to the host hypervisor (the

most privileged level) in 2-level nested virtualization, par-

ticularly memory virtualization. Hardware-assisted nested

virtualization also complicates the design of the host hyper-

visor, expands its potential attack surface, and introduces

new scalability issues.

In single-level memory virtualization, a VM’s virtual ad-

dresses need to be translated to VM physical addresses (level-

1 or 𝐿1) and then to host physical addresses (𝐿0). The two-

level translations can be done entirely in software or assisted

by hardware [25]. Without hardware support, the memory

management unit (MMU) can only register a single page

table. To run multiple VMs, the hypervisor maintains and

registers with MMU a shadow page table (SPT) [35] that

translates directly from VM virtual addresses to host phys-

ical addresses for each VM. Shadow paging requires that

any changes to a VM page table must trap to the hypervi-

sor to update the shadow page table accordingly. To assist

memory virtualization, modern x86 processors add a sec-

ond page table (EPT by Intel and NPT by AMD) to translate

VM physical address to host physical address. This allows

both levels of translation to be performed by hardware, thus

eliminating the need for software emulation and hypervisor

involvement.

There have been significant studies comparing software

and hardware virtualization techniques and their associated

overhead in single-level virtualization [13]. These studies

have motivated the development of a hybrid approach that

leverages the advantages of both software and hardware

techniques. Nested virtualization, on the other hand, ne-

cessitates such a hybrid virtualization approach due to the

limited availability of hardware support. Nested memory

virtualization requires the multiplexing of three levels of

address translation, i.e., from guest virtual addresses to guest

physical addresses (𝐿2), to VM physical addresses (𝐿1), and

eventually to host physical addresses (𝐿0) on the 2-level pag-

ing hardware. One approach is to maintain an SPT at the 𝐿1
or guest hypervisor to handle the top two levels of transla-

tion. A more popular and the default approach in KVM [20]

is to allow the 𝐿2 guest to use its own page table while the 𝐿0
hypervisor maintains a compressed EPT or NPT for translat-

ing 𝐿2 guest physical addresses to 𝐿0 physical addresses (the

bottom two levels). Nevertheless, both approaches involve

an excessive number of world switches, many of which are

unnecessary but expensive exits to the 𝐿0 hypervisor for

assisting switches between the 𝐿2 guest and 𝐿1 guest hyper-

visor. As the number of 𝐿2 guests increases, the complexity

to update and synchronize the consolidated page tables also

increases, causing performance and scalability bottlenecks.

This paper explores the design space of a hybrid software-

hardware approach for nested virtualization and argues that

memory virtualization for an 𝐿2 guest should be exclusively

performed by and within the 𝐿1 hypervisor, assuming no

hardware support and being transparent to the 𝐿0 hypervisor.

This design offers several advantages: 1) decoupling nested

virtualization from the host hypervisor does not add com-

plexity, compromise security, or impact the underlying cloud

management’s elasticity. 2) Handling nested virtualization

entirely within the guest hypervisor enables user-specific

optimizations for security, performance, and scalability.

This paper presents PVM, a KVM guest hypervisor opti-

mized for nested memory virtualization. PVM is a software

paravirtualization solution within the 𝐿1 VM, requiring no

changes to the 𝐿0 host hypervisor. To gain full control over

𝐿2 guest’s memory virtualization, PVM employs software-

based shadow paging for translating 𝐿2 virtual addresses to

𝐿1 physical addresses and relies on hardware EPT or NPT for

the remaining translation to 𝐿0 host physical addresses. This

allows PVM to work with unmodified KVM host hypervisors

and allows nested and ordinary VMs to coexist. Additionally,

to trap all 𝐿2 guest page table updates while excluding the 𝐿0
hypervisor’s involvement, PVM avoids the use of hardware

virtualization extensions on x86 processors, such as Intel

VMX, when performing world switches [24] within the 𝐿1
VM. The nested CPU and memory virtualization based on

software emulation effectively isolates an 𝐿2 guest within an

𝐿1 VM, but it also raises concerns about possible performance

degradation compared to hardware-assisted methods.

PVM demonstrates that software-based world switches

can be made as efficient (or with comparable performance)

as hardware-assisted approaches for single-level virtualiza-

tion. For nested memory virtualization, PVM’s combination

of software (i.e., shadow paging and world switching within

𝐿1 VM) and hardware (EPT and VMX support at the 𝐿0 hy-

pervisor) approaches significantly outperforms hardware

(only)-assisted approaches. To achieve this, PVM involves

three important designs: 1) the placement of the user and

kernel spaces of an 𝐿2 guest entirely in 𝐿1 VM’s privilege

level 3 (Ring 3) to ensure all privileged instructions, system

calls, and exceptions trap to PVM for emulation. This design

is necessary in the latest AMD processors [27] and the up-

coming Intel’s x86-s [9] architecture that both remove Ring

1 and 2 for a simplified CPU instruction set [43]. 2) A piece

of highly-efficient assembly code, called switcher, residing
in a shared memory region between an 𝐿2 guest and the

𝐿1 VM to facilitate world switches among the user and ker-

nel spaces of an 𝐿2 guest as well as PVM, the 𝐿1 hypervisor.
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3) An efficient and scalable shadow page table design en-

abled by PVM’s nested virtualization. PVM features a parallel

SPT and a pre-fault mechanism (and many optimizations) to

accelerate guest page fault handling.

PVM is production-ready and has been adopted by Al-

ibaba Cloud. It runs tens of thousands of secure containers

in nested VMs daily with unmodified KVM host hypervi-

sors. Extensive experiments with micro-benchmarks and

real applications show that PVM achieves comparable perfor-

mance in VM entry/exit, a key indicator of world switching

overhead, compared to hardware-assisted CPU virtualization

in single-level virtualization, and attains up to an order of

magnitude performance improvement in memory-intensive,

concurrent workloads.

In summary, this paper makes the following contributions:

• A comprehensive analysis of state-of-the-art nested

virtualization that reveals the drawbacks of hardware-

assisted approaches andmotivates the hybrid software-

hardware nested architecture, as well as decoupling

nested VMs from the host hypervisor.

• The design and implementation of PVM, a guest hy-

pervisor, and a general framework for nested virtual-

ization that enables user-defined optimizations.

• Optimizations for world switches, concurrent shadow

page table updates, and guest page fault handling.

2 Background and Motivation
As illustrated in Figure 1, nested virtualization enables a

host hypervisor (denoted as the 𝐿0 hypervisor) to run an-

other guest hypervisor (denoted as the 𝐿1 hypervisor) within

a VM, which can in turn run additional VMs (denoted as

the 𝐿2 guest). This 2-level nested virtualization facilitates

the deployment of secure containers, which often run inside

lightweight VMs for strong isolation, within cloud instances

leased from IaaS providers. Unfortunately, current hardware

(e.g., Intel VT-x [40] and AMD-V [47]) only has a single

level of architectural support for virtualization. As a result,

implementing nested virtualization requires complex and

costly software efforts, especially in the 𝐿0 hypervisor. In

this section, we compare 2-level nested virtualization with

traditional single-level virtualization (based on Intel VT-x)

and identify the primary sources of overhead in nested virtu-

alization. This analysis motivates us to develop PVM, a more

efficient nested virtualization approach.

2.1 Overview of nested virtualization
Single-level virtualization. Intel VT-x [46] offers virtual-
ization extensions (VMX) to support an additional non-root
operation mode, coexisting with the traditional root opera-
tion mode, each with privilege levels ranging from 0 to 3. In

single-level virtualization, the host hypervisor operates at

privilege level 0 of the root mode with full privilege, whereas

the guest VM (kernel and user) operates at privilege level

0 and 3 of the non-root mode with reduced privilege. The

Bare-metal

VM

L0

Container
L2

L1

Secure Container

VMCS01
EPT01

VMCS12
EPT12

VMCS02
EPT02

shadowingvirtualize

exit/entry exit/entry

Figure 1. Secure containers with nested virtualization.

communication between a guest VM and the hypervisor oc-

curs through a set of VMX instructions – e.g., VM Exit and

VM Entry. In the non-root mode, a VM Exit occurs when

a privileged instruction is executed or an interrupt is gen-

erated. This triggers the CPU to switch to the root mode,

where the hypervisor handles the VM Exit via emulation. Af-

terward, the hypervisor uses the VM Entry instruction (i.e.,

VMLAUNCH/VMRESUME) to resume the guest VM’s execution. The

hypervisor/guest transition involves the switching of both

the execution modes (i.e., root and non-root mode) and the

hypervisor and guest address spaces. Such context switches,

referred to as world switches, introduce nontrivial overhead.
To preserve the execution contexts of a guest VM and the

hypervisor during world switches, VMX maintains a VM

control structure (VMCS) per virtual CPU (vCPU). Upon a

VM Exit, the processor saves the guest VM’s CPU states

(context) in the VMCS, while loading the hypervisor’s CPU

states from the VMCS, and vice versa for VM entry.

2-level nested virtualization. The existing 2-level nested
virtualization builds upon the hardware support for single-

level virtualization described above but requires additional

software effort. The 𝐿0 hypervisor operates at the most priv-

ileged level – level 0 of the root mode. It manages the under-

lying hardware and emulates VMX for the guest hypervisor

𝐿1. With the emulated VMX, an unmodified hypervisor can

run at 𝐿1 without the awareness of the lower 𝐿0. Similar to a

traditional hypervisor, an 𝐿1 hypervisor can create its own

𝐿2 guest VMs. Both 𝐿1 and 𝐿2 operate in the non-root mode.

Such a nested architecture involves complex and expen-

sive transitions betweenmultiple hypervisors and guest VMs.

For example, in Figure 1, any privileged instruction from 𝐿2
will first be trapped by 𝐿0 (via a VMExit). Since the privileged

instruction needs to be handled by 𝐿2’s hypervisor, i.e., 𝐿1,

𝐿0 forwards the trap to 𝐿1 and uses VM Entry to switch to 𝐿1,

which in turn handles the injected trap (originally from 𝐿2).

Upon the completion of trap handling, 𝐿1 attempts to resume

running 𝐿2 using the VM Entry instruction. As the VM Entry

is a privileged instruction, 𝐿1 is trapped by 𝐿0 again, where

the VM Entry instruction is executed in the root mode to

finally resume 𝐿2. As it can be seen, in 2-level nested virtual-

ization, a transition between 𝐿2 and 𝐿1 (e.g., trap handling)

requires an exit to 𝐿0, doubling the number of world switches

compared to that in single-level virtualization.
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Figure 2. Overhead analysis of nested virtualization.

To reduce the overhead of world switches, nested virtual-

ization employs a shadowing mechanism to maintain VMCS

during switches. As depicted in Figure 1, 𝐿0 is responsible

for maintaining 𝐿1’s VMCS, denoted as 𝑉𝑀𝐶𝑆01, while 𝐿1
maintains 𝐿2’s VMCS, denoted as 𝑉𝑀𝐶𝑆12. Since 𝐿1 works

in the non-root mode, any operation it performs on𝑉𝑀𝐶𝑆12,

such as VMREAD or VMWRITE, will cause an exit to 𝐿0. As studied

in [49], to handle a single world switch from 𝐿2, 𝐿1 needs

to access 𝑉𝑀𝐶𝑆12 multiple times, leading to as many as

40-50 exits to 𝐿0. To avoid excessive 𝐿0 exits, VMCS shad-

owing allows 𝐿1 to maintain a software-based 𝑉𝑀𝐶𝑆12 that

is not directly used for running 𝐿2. Instead, 𝐿0 maintains a

shadow 𝑉𝑀𝐶𝑆02 that is created by merging and synchro-

nizing 𝑉𝑀𝐶𝑆01 and 𝑉𝑀𝐶𝑆12. As all reads/writes to VMCS

are handled by 𝐿0 in the root mode, exits to 𝐿0 due to 𝐿1’s

accesses to VMCS are thus eliminated.

Despite these optimizations, nested virtualization remains

expensive, especially for memory-intensive workloads. We

conducted performance tests using LMbench [8], Kbuild [26],
and SPECjbb2005 [14] within one or multiple secure contain-

ers and compared the performance of single-level virtual-

ization (the secure container running in a regular VM) with

that of 2-level nested virtualization (the secure container

running in an 𝐿2 guest). Note that each LMbench benchmark

ran in a single container while Kbuild and SPECjbb2005 each

used 16 containers to study the cost of nested virtualization

for concurrent workloads. Figure 2 shows that while nested

virtualization introduces additional world switches for han-

dling privileged instructions, its overhead for workloads that

do not involve intensive memory access is negligible. On the

contrary, when dealing with memory-intensive workloads

like frequent updates to page tables, virtual address trans-

lations, and especially simultaneous memory accesses, the

performance slowdown is substantial, reaching up to two

orders of magnitude. In what follows, we discuss memory

virtualization and analyze its overhead.

2.2 Memory virtualization
Memory virtualization is currently facilitated by architec-

tural features such as Extended Page Tables (EPT) in Intel

VT-x or Nested Page Tables in AMD-V. Without loss of gen-

erality, we use EPT as an example to introduce both single

and 2-level memory virtualization.

Single-level memory virtualization involves two dimen-
sional page tables – 1) the regular guest page table (GPT)

maps guest virtual addresses (𝐺𝑉𝐴) to guest physical ad-

dresses (𝐺𝑃𝐴); 2) the extended page table (EPT) maps𝐺𝑃𝐴

to host physical addresses (𝐻𝑃𝐴). The hypervisor is respon-

sible for maintaining the EPT while a guest manages its

own GPT. Since GPT is visible to the memory management

unit (MMU) and guest address translations are performed

by hardware, guest page faults can be entirely handled by a

guest kernel in the non-root mode without exits to the hy-

pervisor. EPT violations, i.e., entries absent in the EPT, cause

hypervisor page faults and are handled by the hypervisor in

the root mode.

SPT-on-EPT. To support 2-level nested memory virtualiza-

tion, three dimensional page tables are required: one for the
𝐿2 guest, one for the 𝐿1 guest hypervisor, and one for the 𝐿0
host hypervisor. One straightforward approach to achieve

this is by using shadow page tables (SPT) in 𝐿1, while still

allowing 𝐿0 to use the EPT hardware, called SPT-on-EPT.
As illustrated in Figure 3(a), 𝐿2 manages its guest page

table, GPT2, which maps GVA𝐿2 to GPA𝐿2 . 𝐿1 manages its

guest page table, GPT1, which maps GPA𝐿2 to GPA𝐿1 . 𝐿0
uses EPT01 to map GPA𝐿1 to HPA. As hardware MMU only

supports two page tables, 𝐿1 combines GPT1 and GPT2 to

create shadow page tables, SPT12, mapping GVA𝐿2 directly

to GPA𝐿1 . To keep SPT12 synchronized with GPT2, every

update made to GPT2 by 𝐿2 must trigger a page fault, and

trap to the 𝐿1 hypervisor. To achieve this, GPT2 is made

read-only to 𝐿2, but writable to 𝐿1. When 𝐿2 is running, 𝐿0
provides both SPT12 and EPT01 to MMU for address transla-

tion, where MMU first uses SPT12 to translate 𝐿2’s GVA to

𝐿1’s physical address; further, MMU uses EPT01 to translate

𝐿1’s physical address to 𝐿0’s HPA. Despite using the EPT

hardware, SPT-on-EPT incurs significant overhead, because

each page fault in 𝐿2 requires 𝐿1 to update the shadow page

tables. As described in Section 2.1, these 𝐿2 page faults/GPT2

updates must first trap to 𝐿0 and then be forwarded to 𝐿1,

resulting in excessive and expensive world switches.

As an example, in Figure 3(a), a page fault from 𝐿2 can

trigger two phases of page table updates : 1) The first phase

updates 𝐿2’s GPT2; and 2) the second phase updates 𝐿1’s

GPT1 and SPT12. More specifically, in the first phase, an ac-

cess to an absent GVA𝐿2 in GPT2 triggers an 𝐿2 page fault and

an exit to 𝐿0 (➀), which injects the page fault to 𝐿1 by writing

𝑉𝑀𝐶𝑆01 (➁) and resumes executing 𝐿1 (➂). The 𝐿1 hypervi-

sor recognizes that this is an 𝐿2 page fault and injects it to 𝐿2’s

𝑉𝑀𝐶𝑆12 (➃) and attempts to resume 𝐿2. Resuming 𝐿2 needs

to trap back to 𝐿0 (➄), which updates 𝑉𝑀𝐶𝑆02 (➅) before fi-

nally resuming 𝐿2 using𝑉𝑀𝐶𝑆02 (➆). The page fault handler

in 𝐿2 updates GPT2 with new page table entries mapping

GVA𝐿2 to GPA𝐿2 (➇) and finally returns to user (➈). To add

more complexity to this process – since GPT2 is read-only,

Without loss of generality, we assume 𝐿1 is warmed up and EPT01 has been

established (i.e., no EPT violations from EPT01) in SPT-on-EPT and all other

memory virtualization approaches.
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Figure 4. The performance comparison between EPT and

SPT w/wo nested virtualization.

every update to GPT2 needs assistance from 𝐿1. Hence, step

➇ could further cause multiple rounds of switches between

𝐿2 and 𝐿1 via 𝐿0 (not illustrated in Figure 3(a)), depending on

the number of page table levels. For example, a 4-level GPT2

needs four rounds of such switches. In the first phase, 𝐿0 can

be involved up to 2𝑛 + 2 times with 4𝑛 + 4 world switches

(where 𝑛 is the number of 𝐿2 page table levels).

The following access to GPA𝐿2 , which was added to GPT2

during the first phase, triggers a page fault in 𝐿1 since GPA𝐿2

is absent from GPT1 and hence SPT12. The second phase

handles this 𝐿1 page fault and updates SPT12. As shown in

Figure 3(a), the second phase follows the same steps as the

first phase (➊-➐), except for two differences. First, at step

➍ the 𝐿1 kernel handles the page fault and updates SPT12.

Second, step ➐ returns directly to 𝐿2 user space without

involving the 𝐿2 guest kernel. In the second phase, there are

four more world switches, including trapping to 𝐿0 twice.
In summary, in the worst-case scenario, in which both

GPT2 and SPT12 need to be updated, and assuming an n-
level GPT2, an 𝐿2 page fault can lead to 4n + 8world switches
and 2n + 4 exits to 𝐿0.

EPT-on-EPT. The state-of-the-art nestedmemory virtualiza-

tion approach for KVM leverages the architectural support

for 2-dimensional page tables in EPT.

As illustrated in Figure 3 (b), 𝐿2 has its own GPT2, which

maps GVA𝐿2 to GPA𝐿2 . 𝐿0 exposes EPT capabilities to 𝐿1,

which creates and maintains an EPT12 table mapping GPA𝐿2

to GPA𝐿1 . Same as SPT-on-EPT, 𝐿0 manages EPT01, mapping

GPA𝐿1 to HPA. Because MMU only supports one EPT table,

𝐿0 compresses EPT01 and EPT12 into one, EPT02, mapping

GPA𝐿2 to HPA. Therefore, 𝐿0 can run 𝐿2 using 𝐿2’s GPT2 and

EPT02. The EPT-on-EPT approach allows 𝐿2 to freely update

GPT2 without any traps to 𝐿0 (➀-➂), but needs multiple

world switches to build and update EPT02 ( ➊-
13
).

The update of EPT02 also involves two phases: The first

phase updates EPT12 and EPT01 (➊-➓). The update of EPT12

is emulated by 𝐿0 – by making EPT12 read-only to 𝐿1. Hence,
step ➎-➐ may repeat multiple times – depending on the

number of page table levels in EPT12. Thus, the first phase

traps to 𝐿0 𝑛 + 2 times with 2𝑛 + 4 world switches (where

𝑛 is the number of EPT12 page table levels). The second

phase updates EPT02 (
11
-
13
), by compressing EPT01 and

EPT12 (built in the first phase). It adds one more 𝐿0 trap and

two more world switches. In summary, a page fault from 𝐿2
triggers 2n + 6 world switches and exit to 𝐿0 for n + 3 times.

Compared to SPT-on-EPT, EPT-on-EPT is more efficient in

terms of fewer number of world switches and 𝐿0 traps [13].

The performance benefit of EPT-on-EPT can be observed

from Figure 4.We used amemory-intensivemicro-benchmark

running in 𝐿2 to sequentially allocate 1 MB memory spaces

and access pages within the allocated regions one by one

with a total working set size of 4 GB. We varied the number

of benchmark instances from 1 to 16. Figure 4 shows that

EPT-on-EPT significantly outperformed SPT-on-EPT in all

cases. However, a considerable performance gap persisted

between EPT-on-EPT and single-level memory virtualiza-

tion (EPT only), and this gap widened as concurrency levels

increased. We quantified the cost of world switches in EPT-

on-EPT and EPT only. For fair comparison, we measured the

time needed to perform an 𝐿2-to-𝐿1 world switch and that

due to an 𝐿1-to-𝐿0 switch in single-level virtualization. While

both are world switches between a VM and its immediate
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hypervisor, the 𝐿2-to-𝐿1 switch involves exits to 𝐿0 to handle

state transition or fault injection. Our measurements showed

that world switches in nested virtualization (1.3 μs) is an or-

der of magnitude more expensive than those in single-level

virtualization (0.105 μs).

2.3 Challenges and opportunities
While EPT-on-EPT is the state-of-the-art nested memory vir-

tualization approach, it has several drawbacks that prevent

it from being adopted in production cloud systems.

First, EPT-on-EPT still leads to a large number of costly

world switches between various levels of hypervisors and

VMs. For example, given a 4-level page table, a page fault

from 𝐿2 can trigger up to 14 world switches and trapping

to 𝐿0 7 times. The high rate of world switches inevitably

leads to high performance overhead in nested virtualization.

Second, nested virtualization upon EPT-on-EPT needs to

extend hardware virtualization capabilities to 𝐿1 VMs. This

leads to increased complexity and decreased flexibility of the

cloud stack. Once an 𝐿2 guest is running, 𝐿1 can no longer

be migrated, saved, or loaded, significantly impacting the

cluster management. Further, many cloud providers do not

support nested virtualization for cloud VM instances [31],

or have many limitations in supporting nested virtualiza-

tion [1, 54]. For example, nested virtualization is incompati-

ble with emerging technologies [30] such as AMD SEV [2]

and Intel TDX [5]. Last, nested virtualization upon EPT-on-

EPT heavily relies on the 𝐿0 hypervisor (e.g., maintaining

EPT02 and forwarding traps between 𝐿2 and 𝐿1). A “fat” host

hypervisor increases security risks by expanding the attack

surface for cloud providers.

These drawbacks of nested virtualization stem from its

original design goal of supporting unmodified guest hyper-

visors (𝐿1) [19, 31]. To achieve this, the host hypervisor (𝐿0)

uses a combination of hardware (e.g., EPT and VMCS) and

software approaches (EPT-on-EPT and shadowing VMCS) to

emulate VMX. However, the goal of using nested virtualiza-

tion for secure containers is entirely different. It simply needs

a strong-yet-lightweight isolation mechanism to make se-

cure containers “deployable” in any existing IaaS clouds. This

motivates us to develop a more efficient nested virtualiza-

tion framework, which assumes no support from hardware

virtualization and supports unmodified 𝐿0 host hypervisor.

3 PVM: Design and Implementation
Wepropose, PVM, a high-performance, pagetable-based nested
virtualization framework built upon the KVM hypervisor.

The over-arching goals of PVM are to completely decouple

secure container hosting from the host hypervisor and hard-

ware virtualization support to 1) enable nested virtualization

with any IaaS clouds without affecting the security, flexibility,

and complexity of the cloud platform; 2) avoid costly exits

to the host hypervisor and devise efficient world switching

mechanisms. To achieve this, PVM is developed based on the

following design choices:

kernel
(v_ring0)

user
(v_ring3)

virtual machine (guest)

kvm.ko kvm-pvm.ko

syscall/
interrupt/exception

hypercall/
interrupt/exception

sysret/iret

vm entry
(function call)

vm exit
(function return)

PVM hypervisor

h_ring3

h_ring0

CPU virtualization
memory virtualization I/O  virtualization

switcher

Figure 5. The PVM architecture.

1) Unlike the existing nested virtualization approaches

that place 𝐿2 on privilege 3 (for the guest user) and privilege

0 (for the guest kernel) in the non-root mode, PVM’s 𝐿1 de-
privileges 𝐿2 to completely operate in the least privilege level

3, or Ring 3, while providing isolation between the guest user

and kernel through the use of separate page tables. This way,

PVM effectively isolates secure containers while allowing for

more efficient world switching (Section 3).

2) De-privileging 𝐿2 to Ring3 further facilitates PVM to

enable 𝐿1 to capture all privileged operations from 𝐿2 and

serve them (via emulation) without involving 𝐿0, thus reduc-

ing the number of world switches. PVM further achieves fast
world switches between 𝐿1 and 𝐿2 via a switcher, a piece of

highly-efficient assembly code/data (Section 3.2).

3) Upon fast world switches, PVM devises a highly-efficient
shadow paging approach with a range of optimizations, lead-

ing to fewer and fasterworld switches than hardware-assisted

approaches, such as EPT-on-EPT (Section 3.3).

The primary contribution of PVM is a software-based

nested virtualization approach that operates independently

of the host (𝐿0) hypervisor and assumes no hardware sup-

port. PVM can co-exist with other ordinary VMs on the same

host and relies on hardware virtualization support for VM-

exit/entry between 𝐿1 and 𝐿0. If not otherwise stated, the

following discussions on 𝐿2-to-𝐿1 switches are entirely han-

dled by PVM without any involvement of the 𝐿0 hypervisor.

3.1 Architecture Overview
Figure 5 depicts the architecture of PVM, which comprises

three key components: the 𝐿2 guest, the switcher, and the

𝐿1 guest hypervisor, or the PVM hypervisor. 1) The 𝐿2 guest

operates entirely within the hardware Ring 3 (i.e., h_ring3

in the non-root mode) with the least privilege. It features se-

cure containers in virtual Ring 3 (i.e., v_ring3) and the para-

virtualized 𝐿2 guest kernel in virtual Ring 0 (i.e., v_ring0).

To distinguish between v_ring0 and v_ring3, both residing

at h_ring3, PVM uses separate page tables for isolating the

𝐿2 guest user and kernel. 2) The switcher is responsible for

“switching” the worlds between the 𝐿1 guest hypervisor, the

𝐿2 guest user, and the 𝐿2 guest kernel. The world switches

can be triggered by a set of events, such as system calls,
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Figure 6. The PVM switcher layout.

hypercalls, and interrupts/exceptions. The Switcher com-

prises efficient and concise assembly code and data structures

that map to identical addresses within the 𝐿1 hypervisor, 𝐿2
user, and 𝐿2 kernel address spaces. 3) Finally, the PVM hy-

pervisor comprises two (loadable) kernel modules: kvm.ko,
which incorporates traditional KVM core functionality to

ensure compatibility with the upper software stack, and kvm-
pvm.ko, which incorporates the core PVM functionality, i.e.,

a customized virtualization implementation using a function

pointer vector of KVM . Note that PVM can support both

nested virtualization and bare-metal machines (i.e., running

as an 𝐿0 host hypervisor). The discussion here and hereafter

focuses on a 2-level nested virtualization scenario, where

secure containers are deployed in 𝐿2 guests managed by the

PVM hypervisor running in an 𝐿1 VM.

3.2 Switcher
Early 32-bit paravirtualized guests in Xen place the guest

user and kernel in Ring 3 and Ring 1, respectively, to trap

access to privileged states and use segmentation to isolate

the guest and host space. In contrast, recent paravirtual-

ized Xen guests in 64-bit x86-64 place guest user and kernel

in Ring 3 and use separate page tables for isolation [43].

This design is necessary due to the possible removal of Ring

1 in the upcoming x86-s architecture [9] and the limited

support of segmentation in x86-64. PVM draws inspiration

from these paravirtualization approaches, such as Xen and

Lguest [7], and adopts a switcher design to enable efficient

world switches between the 𝐿2 user and kernel (Ring 3), and

the 𝐿1 hypervisor (Ring 0) in the non-root mode.

As shown in Figure 5, switcher is located between the 𝐿1
hypervisor and the 𝐿2 guest (user and kernel) and facilitates

state transitions between them. To be executed across do-

mains during the switchover process (i.e., involving switch-

ing page tables and address spaces), switcher must be located

at identical virtual addresses in the 𝐿2 user, 𝐿2 kernel, and 𝐿1
guest hypervisor. Previous methods [7] place a switcher in

a high address space (e.g., 0xFFC00000/0xFFE00000); both the

user and kernel can access it using the same page table.
On the other hand, PVM adopts a more secure approach

by utilizing the Linux Kernel Page Table Isolation (KPTI)

design, which helps to mitigate certain types of security

vulnerabilities, such as those exploited by the Meltdown and

The function pointer vector, or the vCPU run structure, is a data structure

that contains function pointers to various KVM operations, such as context

switching, interrupt handling, and device emulation.
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Figure 7. VM Exit and Entry.

Spectre attacks. Similar to KPTI, PVM leverages separate

page tables for the 𝐿1 host kernel (i.e., the guest hypervisor)

and the 𝐿2 guest and consolidates the switcher’s code/data

(e.g., syscall entry, IDT, TSS, trampoline stack, LDT, etc.)

accessed by both the 𝐿1 hypervisor and the 𝐿2 guest in a per-
CPU entry area. Note that, PVM already uses two separate

page tables for the 𝐿2 guest user and kernel. Therefore, the

switcher, or the per-CPU entry area, needs to be mapped to

three page tables for the 𝐿1 host kernel, 𝐿2 guest user, and

𝐿2 guest kernel, respectively at an identical, unused virtual

address range.

Switcher layout. As illustrated in Figure 6, there are three

key elements in switcher: 1) a per-CPU syscall entry to han-

dle syscall requests between the 𝐿1 guest hypervisor, the 𝐿2
guest user, and the 𝐿2 kernel; 2) a per-CPU switcher state,

similar to VMCS, which saves and restores 𝐿2 guest and

𝐿1 host states during world switches; and 3) customized

interrupt descriptor table (IDT) handlers for capturing in-

terrupts/exceptions: PVM modifies the entries of the IDT in

the 𝐿2 guest (both user and kernel) address space to point

to the switcher’s customized interrupt handlers. This allows

switcher to capture all external interrupts or exceptions, even

during world switches. To ensure efficient accesses to and

the execution of switcher, PVM sets the entire switcher to be

global, preventing its TLB entries from being flushed.

VM exit/entry: Without hardware support, an 𝐿2 guest

traps to the 𝐿1 hypervisor in two ways: syscall/hypercall

and interrupt/exception. In PVM, hypercalls in the 𝐿2 guest

kernel are implemented through the invocation of syscalls

(i.e., via unique hypercall numbers).

As illustrated in Figure 7(a), when an 𝐿2 guest executes

a syscall instruction or an interrupt/exception occurs, the

CPU transitions to h_ring0 and enters the switcher through

a pre-defined handler in CPU registers (e.g., MSR_LSTAR

or IDTR). Inside the switcher, the to_hypervisor function
performs the world switch from the 𝐿2 guest user (or kernel)

to the 𝐿1 hypervisor. The switch function saves the 𝐿2 guest

states and restores the 𝐿1 host states to/from the per-CPU

switcher state (shown in Figure 6). Once the exit has been

completed (e.g., via emulation as discussed in Section 3.3.1),

521



Guest User
(v_ring3)

switcher
h_ring0

h_ring3

Guest Kernel
(v_ring0)

v_ring0_hw_cr3

.code syscall_entry

.data state

syscall

direct switch
• switch hCR3
• switch cpl,  stack 

and gs_base

① turn to %rip

② switch to

sysret
hypercall

❶turn to %rip❸sysretq

③ sysretq

❷ switch to

v_ring3_hw_cr3

Figure 8. The direct switching within switcher.

the enter_guest function in the 𝐿1 hypervisor rebuilds the

𝐿2 guest context by saving the 𝐿1 host states and restoring

the 𝐿2 guest states to/from the per-CPU switcher state, as

shown in Figure 7(b). This way, the CPU switches from the

𝐿1 host (h_ring0) to the 𝐿2 guest (h_ring3). Additionally, to

mitigate the security risk that arises due to mapping switcher

into different address spaces, PVM clears all general purpose

registers except for RSP and RAX during a VM-exit to prevent

speculative use of a guest’s CPU states. This prevents an 𝐿2
guest from accessing saved CPU states of another guest or

the guest hypervisor.

Direct switch: PVM has also devised a novel direct switch

mechanism in the switcher, as shown in Figure 8. This direct-

switchmechanism allows𝐿2 guests to achieve fast user/kernel

switches due to syscalls without hypervisor intervention.

Specifically, when an 𝐿2 guest user invokes a syscall from

h_ring3, the CPU transitions to h_ring0 and enters switcher.

Switcher emulates the syscall instruction by 1) saving the

state of the 𝐿2 guest user; 2) restoring the state of the 𝐿2
guest kernel; and 3) constructing a syscall frame where the

𝐿2 guest kernel can invoke the requested syscall function. At

the end of the syscall emulation, switcher directly switches

to the 𝐿2 guest kernel for executing the syscall. By default,

the kernel returns a syscall via the sysret instruction. As

sysret is a privileged instruction while the 𝐿2 guest kernel is

running in h_ring3, the execution of sysret by the 𝐿2 guest

kernel will trap to h_ring0. To enable direct switch, PVM uses

a sysret hypercall in the 𝐿2 guest kernel to return a syscall.

The sysret hypercall will enter the switcher (no traps to the

𝐿1 hypervisor), which switches the execution worlds and

directly returns the 𝐿2 guest user.

3.3 PVM Hypervisor
3.3.1 CPU virtualization. PVM relies entirely on the soft-

ware emulation for CPU virtualization. PVM virtualizes a

vCPU by maintaining its state in the vCPU data structure

(similar to VMCS) stored in the per-CPU entry area (see

Figure 6) in switcher. As stated in Section 3, 𝐿2 guest vC-

PUs are restricted to operate solely on h_ring3 for security

considerations. The PVM hypervisor simulates v_ring0 and

v_ring3 using a switcher state flag for the 𝐿2 guest. As 𝐿2
guest vCPU works on h_ring3, access to privileged registers

EPT
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Figure 9. PVM-on-EPT.

and segment states, and the execution of privileged CPU in-

structions must be intercepted by the PVM hypervisor. PVM

adopts a hybrid approach based on instruction emulation

and paravirtualization for CPU virtualization. It currently

focuses on supporting the 64-bit mode with paging for 𝐿2
guest vCPUs, as this is the most frequently used mode.

Specifically, when an 𝐿2 vCPU executes a privileged in-

struction, it leads to a general protection exception and trig-

gers an exit to the 𝐿1 hypervisor. The PVM hypervisor em-

ploys an instruction simulator to emulate instruction ex-

ecution for the 𝐿2 guest. As the process of trap and emu-
lation is expensive, PVM uses hypercalls to handle a total

of 22 frequently invoked privileged instructions (e.g., iret,

write_msr, and read_msr). Non-privileged but sensitive in-

structions also need to be restricted because of their capa-

bility to modify/observe privileged host states. PVM uses

the Linux paravirtualization (PV) mechanism – initially pro-

posed by Xen [18] – to manage both sensitive and privileged

instructions via pv_cpu_ops, pv_mmu_ops, and pv_irq_ops in-

terfaces. These interfaces enable PVM to capture and handle

any sensitive instructions even though x86 is not fully virtu-

alizable [42].

3.3.2 Memory virtualization. PVM seeks to handle memory

virtualization of an 𝐿2 guest exclusively by and within the

𝐿1 hypervisor and employs a software-based approach, i.e.,

shadow page tables (SPT). As stated in Section 3, PVM uses

separate page tables for the 𝐿2 guest user and 𝐿2 kernel,

preventing any access from the guest user to the guest kernel

address. Accordingly, PVM constructs separate shadow page

tables for the 𝐿2 guest kernel and user, simulating KPTI for 𝐿2
guests at the 𝐿1 hypervisor level, achieving strong isolation.

However, as discussed in Section 2.2, both SPT (single

memory virtualization) and SPT-on-EPT (2-level nestedmem-

ory virtualization) incur significant poor overhead due to a

large number of expensive world switches. To address this

challenge, PVM devises a new and highly-efficient SPT ap-

proach with various optimizations, called PVM-on-EPT, as
illustrated in Figure 9. Compared with the EPT-on-EPT ap-

proach (Section 2.2), PVM-on-EPT leads to fewer and cheaper
world switches, making it possible for a software-based SPT
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approach to achieve comparable (or better) performance as

(than) the hardware-assisted approach.

PVM-on-EPT. Figure 9 shows that, the 𝐿2 guest operates its
guest page table (GPT2), mapping GVA𝐿2 to GPA𝐿2 , while the

𝐿1 hypervisor maintains the guest shadow page table (SPT12)

for 𝐿2, mapping GVA𝐿2 to GPA𝐿1 . Note that, 𝐿1 maintains

two shadow page tables – one for the 𝐿2 guest user and one

for the 𝐿2 guest kernel. To ensure that any updates from

GPT2 are synchronized with SPT12, GPT2 is made read-only
to 𝐿2. Finally, to run the 𝐿2 guest, the underlying host 𝐿0
hypervisor simply uses both SPT12 and EPT01 (which maps

GPA𝐿1 to HPA) to translate GVA𝐿2 to HPA. Since EPT01 for

an 𝐿1 VM appears identical to that of other regular VMs,

the 𝐿0 hypervisor remains unaware of the nested memory

virtualization within 𝐿1, and thus, requires no modifications

to support PVM-on-EPT.

We use the handling process of a page fault from 𝐿2 to

demonstrate the world switches due to PVM-on-EPT. First,

an 𝐿2 page fault occurring from the guest user space traps

to the 𝐿1 hypervisor via the switcher (➀-➁) with one world
switch. The page fault handler of the PVM hypervisor injects

the page fault back to 𝐿2 (➂) and switches to the 𝐿2 kernel

via one world switch (➃-➄). Then, the 𝐿2 kernel starts updat-

ing GPT2 (➅). As GPT2 is read-only, each update needs the

assistance of 𝐿1, causing 2n (where n is the number of GPT2

levels) world switches between the 𝐿2 kernel and 𝐿1 (not

depicted in Figure 9). After all related page table entries in

GPT2 have been updated, the 𝐿2 guest kernel returns (➆ via

the iret hypercall). Instead of returning to the 𝐿2 guest user
via direct switch, PVM adopts a prefault optimization and

switches to 𝐿1 (with oneworld switch), which proactively up-
dates SPT12 (➇), preventing future traps due to subsequent

page faults on SPT12 due to the missing of the correspond-

ing GVA𝐿2 recently updated in GPT2. Finally, 𝐿1 returns to

𝐿2 guest user with one more world switch. In summary, an

𝐿2 page fault causes 2n + 4 world switches under PVM-on-

EPT, fewer than EPT-on-EPT which triggers 2n + 6 world

switches. Note that, PVM-on-EPT exclusively handles of 𝐿2
page faults within 𝐿1, while EPT-on-EPT heavily relies on 𝐿0.

Although PVM-on-EPT only saves two world switches com-

pared to EPT-on-EPT, the world switches in PVM-on-EPT

are substantially cheaper. The world switches in PVM en-

tail state transitions within switcher and ring level changes

in the non-root mode while those in EPT-on-EPT require

state transitions across the non-root and root mode. Our

measurements show that it takes on average 0.179 μs to per-

form a world switch in PVM, almost an order of magnitude

cheaper than that in EPT-on-EPT (1.3 μs) and close to that

in single-level virtualization (0.105 μs).
Optimizations. In addition to the prefault optimization, we

devise two other important optimizations in PVM-on-EPT: 1)

a process context identifiers (PCID)mappingmechanism that

eliminates TLB flushes for 𝐿2; and 2) a fine-grained locking

mechanism for fast SPT updates.

In a traditional SPT approach, the hardware uses hier-

archical address space ID for TLB (e.g., EPTP, VPID, and

PCID), and all processes running in the same 𝐿2 guest share

the same higher granular VPID. This means that any TLB

flushes to the 𝐿2 (user or kernel) cause the higher granular

VPID to be flushed rather than the specific PCID, resulting in

a costly cold-start penalty as all TLB entries associated with

the 𝐿2 guest are flushed whenever there is a 𝐿2 flush request.

To eliminate these TLB flushes for 𝐿2, PVM employs a PCID

mapping mechanism. It assigns unused PCID values (e.g.,

32-63) from 𝐿1 to the 𝐿2 guest (e.g., 32-47 for guest v_ring0

and 48-63 for guest v_ring3) and maps them with the 𝐿2
guest’s PCID. This allows the TLB hardware to recognize

individual SPTs for each process in 𝐿2, thereby eliminating

TLB flushes during world switches.

In addition, a traditional SPT approach relies on a global

read-write lock, namely “mmu_lock”, to serialize updates to

SPT data structures. In contrast, PVM employs a fine-grained

locking mechanism that provides more precise data protec-

tion and enables greater concurrency in handling page faults.

First, PVM identifies tasks that can be processed without

holding the “mmu_lock” or can be delayed (such as walking

shadow pagetables), thereby reducing the sequential execu-

tion time caused by “mmu_lock”. Further, PVM categorizes

SPT related data into three sub-groups: 1) inter-shadow pages

(e.g., shadow page collections or parent/child relationships),

2) intra-shadow pages (e.g., shadow page-table entries), and

3) reverse mappings (between a guest frame number and its

SPT entry) allowing for faster location of the SPT entries

given a guest frame number. PVM uses separate locks to pro-

tect each data group – i.e., a “meta-lock” for inter-shadow

pages, a per-shadow page “pt_lock” for intra-shadow pages,

and a per-guest frame number, per-page “rmap_lock” for

reverse mappings.

3.3.3 Interrupt virtualization. Unlike CPU and memory

virtualization that can be entirely handled by PVM within 𝐿1,

interrupt virtualization requires the involvement of the 𝐿0
hypervisor. Whenever an interrupt for an 𝐿2 guest occurs,

regardless of KVM or PVM, an 𝐿2 guest will first need to exit

to the 𝐿0 hypervisor because in both scenarios the interrupt

will cause a VM exit from the non-root mode to the root

mode at 𝐿0. This first world switch is enabled by VMCS and

handled (automatically and transparently to software) by

the CPU hardware. Subsequently, the 𝐿0 hypervisor injects

the interrupt to the 𝐿1 VM, from where PVM handles the

interrupt differently from the existing approaches. In KVM,

since the 𝐿1 VM is unable to manage the VMCS for the 𝐿2
guest and the 𝐿0 hypervisor manages a shadow copy𝑉𝑀𝐶𝑆02
for 𝐿2 (as discussed in Section 2.1), the following interrupt

handling requires multiple exits to L0. In contrast, after in-

terrupt injection to the 𝐿1 VM, PVM uses a customized IDT

to handle the interrupt entirely between 𝐿1 and 𝐿2 without

any involvement of 𝐿0.
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PVM relies on 𝐿0 solely for interrupt injection to 𝐿1 and

adopts software-based interrupt virtualization afterwards. If

an interrupt occurs while an 𝐿2 guest is running, the default

interrupt descriptor table (IDT) handler for this 𝐿2 guest,

which is pointed by the hardware IDTR register located in

the 𝐿2 guest address space, cannot handle it appropriately.

To address this issue, PVM maps a customized IDT at the

address to where the IDTR points in the 𝐿2 address space.

The customized IDT initiates a transition to the PVM hyper-

visor (equivalent to a VM exit from 𝐿2 to 𝐿1) to handle the

interrupt. Note that as PVM shifts the starting address of

the guest’s CPU entry area back by one PUD size, both the

customized IDT and the 𝐿2 guest’s original IDT can co-exist.

Within the 𝐿1 VM, PVM reuses the interrupt controller (APIC)

virtualization in KVM to convert the interrupt to a virtual

interrupt and injects it back to the 𝐿2 guest, from where the

virtual interrupt handle is identical to that in a regular VM.

To capture all interrupts for an 𝐿2 guest, the PVM hyper-

visor enables hardware interrupts at h_ring3, where the 𝐿2
guest operates. This requires setting the RFLAGS.IF flag in

the iret frame for each VM entry in switcher. However,

read/write to the interrupt configuration from within an 𝐿2
guest does not cause an exit to the 𝐿1 hypervisor and thus the

latter does not know whether a virtual interrupt can be in-

jected into an 𝐿2 guest, i.e., whether the interrupt is enabled

in 𝐿2. To overcome this, PVM introduces an 8-byte shared

data structure between an 𝐿2 guest and the 𝐿1 hypervisor

to virtualize RFLAGS.IF. As such, the 𝐿1 hypervisor is able to

directly query interrupt configuration inside an 𝐿2 guest.

4 Evaluation
We have thoroughly evaluated the effectiveness of PVM. As

PVM does not require hardware virtualization support and

is compatible with KVM’s virtualization interface, it can

run both as 1) an 𝐿1 guest hypervisor for nested virtualiza-

tion and 2) an 𝐿0 hypervisor on bare-metal hardware for

single-level virtualization. We compared PVM with two ex-

isting approaches: hardware-assisted and shadow page table-

based (software) approaches in both single-level (bare-metal)

and nested (2-level) virtualization. Specifically, we first used

micro-benchmarks to investigate the performance of PVM’s

switcher in performing world switches and PVM’s shadow

paging (i.e., PVM-on-EPT) in handling various types of guest

page table updates. Further, we used real-world applications

to assess the overall performance and scalability of PVM.

Without loss of generality, we conducted the experiments

using Intel processors. We used two Intel x86 instances from

Alibaba Cloud – 1) a bare-metal instance and 2) a general-

purpose (VM) instance with identical software and hardware

configurations. Each instance was configured with two Intel

Xeon Platinum CPUs (i.e., model 8269CY with 26 cores at

2.50GHz and hyperthreading enabled), 385 GB RAM, and a

500 GB SATA SSD. The bare-metal instance was equipped

with Intel virtualization technology (VT), supporting VMX

Configurations

kvm

(BM)

pvm

(BM)

kvm

(NST)

pvm

(NST)

Hypercall 0.46/0.46 0.54/0.54 7.43/7.87 0.48/0.48

Exception 1.66/1.65 1.67/1.65 9.20/9.01 2.21/2.2

MSR access 0.87/0.87 2.53/2.51 8.18/8.47 2.88/2.86

CPUID 0.54/0.54 0.60/0.59 7.10/7.16 0.51/0.51

PIO 3.79/3.39 4.91/4.54 29.34/28.27 12.94/12.03

Table 1. Average round-trip latency (μs) of VM exits/entries

with KPTI enabled/disabled.

root and non-root modes, EPT, and VMCS Shadowing. The

VM instance had no hardware virtualization support and did

not colocate with other VMs. Hence, its performance was

solely affected by nested virtualization.

We ran benchmarks and workloads using Kata contain-

ers, namely the secure containers where regular containers
are deployed and running in lightweight VMs, controlled

by KVM or PVM. A secure container can run as an 𝐿2 guest

on the general-purpose VM instance or directly on the bare-

metal instance. All secure containers were managed by the

RunD [36] runtime. Both the 𝐿1 guest hypervisor and 𝐿0 host

hypervisor ran Linux kernel 4.19. For I/O virtualization, we

used paravirtualization: virtio-blk for disk and vhost-net

for network. All Linux kernels had Kernel Page Table Isola-

tion (KPTI) enabled, if not otherwise stated.

We considered five scenarios for the deployment of secure

containers: 1) Bare-metal (BM) instance with full hardware

virtualization support, denoted as kvm-ept (BM). This is the
single-level virtualization case with the hardware VMX and

EPT support. 2) Bare-metal instance with shadow paging

(kvm-spt (BM)). This is the baseline for software-based mem-

ory virtualization. 3) PVM on bare-metal hardware (pvm
(BM)). 4) 2-level nested (NST) virtualization with full hard-

ware support (kvm-ept (NST)). This is a state-of-the-art ap-
proach for deploying secure containers in VM instances. 5)

PVM within VM instances with nested virtualization (pvm
(NST)). Note that we exclude the shadow-on-shadow (SPT-

on-SPT) scenario as it is not a viable approach in practical

systems due to unacceptable performance.

4.1 Micro-benchmarks
VM exit and entry cause world switches between a VM and

its underlying hypervisor(s). With VMX hardware support,

VM exits directly trap to ring-0 in root mode, i.e., the 𝐿0
hypervisor in nested virtualization. In contrast, PVM uses

hypercalls or instruction emulation to trap privileged in-

structions due to the absence of hardware support, but VM

exits only trap to the 𝐿1 guest hypervisor, i.e., PVM (instead

of the 𝐿0 hypervisor). We evaluated the effectiveness of PVM

in handling VM exits compared to the hardware-assisted

approach in single-level and nested virtualization. As both

kvm-spt and kvm-ept use VMX for CPU virtualization, their

results are similar and are collectively referred to as kvm.

We used a set of micro-benchmarks to perform privileged

guest operations to trigger VM exits andmeasured the round-

trip time until VM entries, both with KPTI enabled/disabled.
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Configurations Optimization Syscall (μs)
kvm-ept (BM) 0.22/0.06

kvm-spt (BM) 2.09/0.06

pvm (BM) none 1.91/1.91

direct-swicth 0.29/0.29

kvm (NST) 0.23/0.06

pvm (NST) none 1.93/1.93

direct-swicth 0.3/0.3

Table 2. Execution time (μs) of syscall get_pid with KPTI

enabled/disabled.

Table 1 lists the average round-trip latency under five privi-

leged guest operations: no-op hypercall, invalid opcode ex-

ception, MSR access of MSR_CORE_PERF_GLOBAL_CTRL, CPUID,

port-mapped I/O (PIO). For each case, the average round-trip

latency was determined based on ten million operations.

In single-level virtualization, VM exits/entries were effi-

ciently handled by hardware: pvm (BM) offered performance

comparable to kvm (BM) in most guest operations, except

for MSR access. It is due to KVM’s capability to directly

access MSR registers in non-root mode, avoiding VM ex-

its. In nested virtualization, PVM significantly outperformed

hardware-assisted approaches: pvm (NST), compared to kvm
(NST), reduced VM exit/entry latency by an average of over

75%. This clearly demonstrates the benefit of PVM’s software-

based VM exit/entry: kvm (NST) triggered two expensive

exits to the 𝐿0 hypervisor for each privileged 𝐿2 guest opera-

tion, while PVM needed one and less expensive VM exit to the

𝐿1 guest hypervisor. From these results, we did not discern

any considerable impact from KPTI on VM exits/entries.

System calls, or syscalls, cause the transition between guest

user and kernel space. Unlike other privileged operations,

most syscalls can be handled without VM exits in hardware-

assisted, nested virtualization – i.e., no exits to the 𝐿1 or 𝐿0
hypervisor. In contrast, without the VMX hardware support,

PVM emulates the syscall instruction through its switcher,
where a guest syscall causes an exit to the PVM hypervisor.

To gauge PVM’s efficiency in handling guest syscalls, we

measured the execution time of the get_pid syscall. This

syscall is simple and mostly involves a user/kernel transition.

In Table 2, regardless of single-level or nested virtualization,

kvm-ept (BM) and kvm (NST) achieved similar and superior

performance because the syscall can be handled exclusively

and quickly by the guest. We then analyzed two PVM vari-

ants: one with direct switching and the other without. Com-

pared with hardware-assisted approaches, PVM noticeably

slowed down syscall execution – e.g., by up to 7x without

direct switching (with KPTI enabled). The direct switching

feature can reduce PVM’s overhead, narrowing the syscall

execution time gap between PVM and its hardware-assisted

counterparts to around 1.3x (with KPTI enabled). kvm-spt
was the least efficient of all tested methods because a user-

kernel transition in the guest requires a costly trap to the

hypervisor to switch the corresponding shadow page tables.
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Figure 10. The performance of guest page faults handling.

We observed that with KPTI disabled, both kvm-ept (BM)
and kvm (NST) executed the get_pid syscall faster due to

reduced world switches between the guest user and kernel,

e.g., the syscall latency dropped from 0.22 to 0.06 microsec-

onds. However, this improvement was not observed in PVM,

e.g., the latency remained around 0.30 microseconds (with

direct switching). The main reason is that disabling KPTI

in PVM does not reduce its world switches: After a system
call completes via sysret, there remains the necessity to exit

either to switcher or to the PVM hypervisor. Both change the

ring level from h_ring3 to h_ring0 in non-root mode. We are

in the process of developing an advanced direct switching

optimization that can return sysret at h_ring3. This can save

one exit to h_ring0 during syscalls and achieve comparable

syscall latency as that in the KVM baselines without KPTI.

Page faults. In nested virtualization, PVM is transparent to

the 𝐿0 hypervisor. Consequently, any violations in EPT01 –

i.e., responsible for translating 𝐿1 VM’s physical addresses

to 𝐿0 host’s physical addresses – are handled by the 𝐿0 hy-

pervisor (out of PVM’s control). Thus, we assume that the 𝐿1
VM has been sufficiently warmed up and there are very few

EPT violations. This is a reasonable assumption as general-

purpose VM instances usually stay up for hours, if not for

days. We focus on evaluating guest page faults, i.e., those

due to launching short-lived secure containers.

We used a micro-benchmark to repeatedly allocate and

release 1MB of memory in a guest’s virtual address space and

access the allocated data at page granularity. This process

continued until the accessed data reached 4GB. This bench-

mark caused frequent updates to the guest page table and

thus stress-tested memory virtualization. To examine scala-

bility, we adjusted the number of benchmark processes from

1 to 32 within a single container. Figure 10 illustrates the per-

formance of various approaches, among which kvm-ept (BM)
achieved the best performance and scalability. This is because

the existing 2-level paging hardware can efficiently handle

guest page table updates. While pvm (BM) shows similar scal-

ability, its performance lags. This is expected for a software-

based approach. Notably, pvm (NST) significantly outper-

formed kvm-ept (NST), and the performance gap widened

with increasing concurrency. This clearly demonstrates the

benefits of PVM’s shadow paging (i.e., PVM-on-EPT) and

its optimizations – prefault, PCID mapping, and fine-grained

page table locking. As depicted in Figure 10, by applying
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Config #C

null

I/O

stat

open

close

slct

TCP

sig

inst

sig

hndl

fork

proc

exec

proc

sh

proc

kvm-ept

(BM)

1 0.27 0.72 25.07 2.16 0.29 1.01 82.13 422.33 1.6k

32 6.5 14.6 289.5 2.16 0.3 4.005 513.5 4.62k 7.64k

kvm-spt

(BM)

1 2.15 2.66 32.63 4.09 2.16 2.95 504.67 1.5k 4.2k

32 6.325 14.2 266 4.115 2.17 3.995 32k 76k 171k

pvm

(BM)

1 0.33 0.78 30.83 2.18 0.32 1.71 436.67 1.29k 3.58k

32 6.475 14.95 314 2.18 0.33 4.25 5.38k 12.5k 29.5k

kvm-ept

(NST)

1 0.28 0.76 36.43 2.24 0.30 1.07 113.00 725.67 2.29k

32 7.03 16 578.5 2.495 0.35 4.295 812.5 14k 28k

pvm

(NST)

1 0.33 0.79 25.73 2.22 0.33 1.72 466.33 1.33k 3.55k

32 5.96 10.45 335.5 2.25 0.33 4.52 7.04k 15k 32.5k

Table 3. LMbench: Processes - time in μs (smaller is better).

Config

0K File

create/delete

10K File

create/delete

Mmap

Prot

Fault

Page

Fault

100fd

select

kvm-ept(BM) 86.83/55.37 139.37/59.43 85.93k 0.66 0.15 2.02

kvm-spt(BM) 115.97/73.10 190.77/80.57 125.9k 3.17 0.93 3.96

pvm(BM) 112.83/73.83 172.30/73.57 115.20k 2.65 0.88 2.05

kvm-ept(NST) 148.73/98.87 221.63/98.77 128.03k 0.69 0.19 2.09

pvm(NST) 108.03/69.33 161.20/68.50 118.20k 2.69 1.01 2.08

Table 4. File & VM system latencies in μs (smaller is better).

the fine-grained page table locking optimization alone, PVM

achieves superior scalability; the use of prefault and PCID

mapping further enhances PVM’s performance.

4.2 System Benchmarks
Beyond our hand-crafted micro-benchmarks, we also used

system benchmarks targeting different guest subsystems to

more comprehensively evaluate PVM. We selected 32 bench-

marks in LMbench [8], including process management, file

systems, and network I/O. Table 3 and 4 present the results

for process management and file system I/O, respectively.

For process management, we present results with a single

process and 32 processes. Networking results are similar to

that of file systems and thus not presented.

Table 3 shows that pvm (BM) consistently outperformed

kvm-spt in most cases and achieved close yet slightly worse

performance than that of kvm-ept (BM) except for fork, exec,
and sh. We found that these three benchmarks intensively

created new page tables without actually accessing them.

Therefore, these benchmarks caused guest page faults that

never needed to update the 𝐿0 hypervisor’s EPT. In such

cases, hardware-assisted approaches are always more effi-

cient and page faults can be handled solely by the guest.

A similar pattern was observed for nested virtualization –

pvm (NST)was consistently better than kvm-ept (NST) except
for the three tests for the same reason. Table 4 shows the

performance of the file system I/O and virtual memory man-

agement. As PVM largely relies on KVM for I/O virtualization,

its performance on file and network I/O was close to KVM,

whether in single-level or nested virtualization. The only

exceptions were observed in the two page fault benchmarks

– similar to the fork benchmark, guest page faults occurred

without updates in the hypervisor-managed page table. We

also performed tests on network latency and bandwidth and

obtained similar results as those in the file system tests.

4.3 Real-world Applications
We continued the evaluation of PVM using four representa-

tive real-world applications with distinct characteristics: 1)

Kbuild [26] builds the Linux kernel from the source involv-

ing a mixture of compute and file I/O; 2) Blogbench [16] is a

filesystem benchmark that reproduces the load of a busy file

server; 3) SPECjbb2005 [14] is a Java benchmark involving

the use of a Java virtual machine (JVM); 4) Fluidanimate is a
benchmark with a large dataset selected from the PARSEC

benchmark suite [21]. We ran multiple instances of the same

benchmark, each in a separate secure container, and varied

the concurrency level from 1 to 16.

We made the following observations from the results as

shown in Figure 11. First, for all applications, PVM offered per-

formance close to the hardware-assisted approach for single-

level virtualization. Further, the performance of kvm-ept
(NST) collapsed in all cases when concurrency was high, sug-

gesting that the 𝐿0 hypervisor became the bottleneck. This

discovery reinforces that only utilizing hardware-assisted

approaches to traverse multiple layers in the virtualization

stack is neither efficient nor adaptable. In comparison, PVM

achieved consistently good performance and, in many cases,

close to that of single-level virtualization. PVM even out-

performed the hardware-assisted approach in fluidanimate
due to more efficient handling of the HALT instruction. PVM

executes the HALT instruction via a hypercall and performs

the sleep and wakeup process without a switch between the

non-root and root modes, leading to higher overall CPU uti-

lization for parallel programs with blocking synchronization.

PVM achieves superior concurrent performance due to two

main factors. First, PVM incurs only one VM exit to 𝐿0 when

handling an interrupt, eliminating the need for VM exits to

𝐿0 when managing 𝐿2 guest page faults. As a result, there

is less strain on 𝐿0 by minimizing the frequent switching

between non-root and root modes. Instead of overwhelming

𝐿0 with these tasks, PVM enables interrupts and 𝐿2 guest

page faults to be individually and concurrently handled by

their corresponding 𝐿1 hypervisors. Second, PVM devises 𝐿0-

transparent optimizations for page fault handlings, such as

prefault, PCID mapping, and fine-grained shadow page table

locks. These mechanisms together achieve up to two orders

of magnitude performance improvements when compared

to hardware-assisted virtualization with multiple 𝐿2 guests.

We further increased the density of secure container de-

ployment to the maximum capacity the two cloud instances

can handle. Figure 12 shows the performance of fluidan-
imate – the most memory-intensive one among the four

applications. Interestingly, under high load conditions, all

approaches converged to similar performance except for

kvm-ept (NST), which crashed due to a failure to connect to

the RunD container runtime. Last, we evaluated PVM with
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(a) Kbuild (lower is better)
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(d) Fluidanimate (lower is better)

Figure 11. The performance of real-world applications under different levels of concurrency.
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Figure 12. The performance of fluidanimate under high load.
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Figure 13. The performance of cloud benchmarks.

three representative workloads with large datasets from the

Cloud Bench Suite [4]. This experiment stress-tested PVM’s

capability of executing data-intensive applications at a rel-

atively low concurrency level. Figure 13 shows that PVM

achieved close performance to bare-metal approaches and

significantly outperformed kvm-ept (NST).
To summarize, PVM is currently themost practical solution

for nested virtualization across various workloads, delivering

comparable performance to single virtualization.

4.4 Cloud Adoption
PVM has been adopted by Alibaba Cloud, a major IaaS cloud

provider, as an alternative to bare-metal instances for hosting

secure containers. Presently, PVM operates more than 100K

secure containers with over 400K vCPUs on a daily basis.

These secure containers are deployed for a range of tasks,

such as user-defined serverless functions, data analytics via

Spark, and offline batch jobs. PVM has effectively supported

users in addressing traffic spikes by promptly launching

general-purpose instances with nested virtualization.

The adoption of PVM has continued to grow over the

past year. It has led to a 36% user shift from bare-metal in-

stances to general-purpose instances for secure container

hosting and substantial cost-savings for cloud tenants. No-

tably, there has been a steady migration of Spark–based

in-memory data processing and analytics workloads from

bare-metal servers to PVM servers with nested virtualization.

These PVM servers have shown an average performance

boost of 22.6% for Spark workloads. It is worth noting that

the PVM servers are equipped with newer generation pro-

cessors than the bare-metal ones in Alibaba Cloud. We ex-

pect PVM to offer comparable performance with bare-metal

servers if both were deployed on the same platform.

5 Discussions and Future Work
Security of PVM. Secure containers running in PVM share

the common isolation assumptions as traditional VMs: We

trust hardware-based protection (e.g., page tables), which

ensure strong isolation between processes, or “worlds” in

PVM; we focus on deficiencies in software (e.g., kernels and

hypervisors) that could be exploited through exposed in-

terfaces like system calls or hypercalls. Hence, the threat

model assumes that one malicious tenant (running in 𝐿2)

may attempt to breach the isolation boundaries by compro-

mising the exposed interfaces and exploiting vulnerabilities

in its host kernels or hypervisors (running in 𝐿1), resulting

in information leakage, privilege escalation, and denial of

services. Two main metrics are used to evaluate the attack

surface: 1) the size of the exposed interfaces and 2) the extent

of code accessible through the interfaces.

Secure containers running with PVM provide stronger iso-

lation (i.e., more secure) than traditional containers that are

deployed directly on the (𝐿1) host and share the same host

kernel. There are two main reasons: 1) Narrow attack sur-

face: secure containers interact with the (𝐿1) host kernel via

a minimal set of hypercalls, typically around 10s. In contrast,

traditional containers rely on a much larger system-call in-

terface, e.g., 250+ system calls under the default seccomp

configuration. 2) Defense in depth: a malicious user in secure

containers needs to comprise both the (𝐿2) kernel and (𝐿1)

hypervisor before being able to comprise the (𝐿1) host kernel,

making it challenging for attackers to breach the isolation

boundaries and escalate privileges. Moreover, PVM leads to

a thin L0 hypervisor compared to hardware-based nested

virtualization, which further reduces the security risks and

minimizes the attack surface for IaaS clouds.
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Limitations of PVM. As a software-based approach for

nested virtualization, PVM could introduce considerable over-

head for certain workloads, such as fork and the allocation

of many small memory areas. These workloads lead to a

high number of 𝐿2 guest page faults that the PVM hypervisor

needs to handle. In contrast, a guest can handle these page

faults exclusively in hardware-assisted approaches. Even

though these access patterns are rare in real-world applica-

tions, we aim to address this issue by allowing PVM’s switcher
to distinguish between guest and shadow page table faults.

By doing this, the former can be directly injected back to an

𝐿2 guest, saving one exit to PVM.

PVM ensures isolation between the guest user and ker-

nel by using separate page tables for each, resulting in dual

shadow page tables. We are continuously refining PVM in

two directions. First, write protection (WP) is currently em-

ployed by PVM to synchronize the guest and shadow page

tables (GPT and SPT). However, WP-induced VM exits cause

a significant overhead with dual shadow page tables. We

are exploring the possibility of removing WP by allowing

the guest and hypervisor to collaboratively construct these

page tables through an efficient synchronization approach.

Second, we are working towards implementing a Xen-like

“direct paging” solution on KVM by mapping the GPA->HPA

relationship to the guest.

6 Related Work
Secure containers [6, 10, 15] host containerized workloads

in lightweight VMs. They can be crafted with both hardware

support [3, 12, 46] and software optimizations [15, 51, 52],

leading to minimized performance overhead. For instance,

Intel CPUs support Virtualization Technology (VT-x) [3, 46]

and Virtualization Technology for Direct I/O (VT-d) [12] to

reduce the performance overhead of CPU, memory, and I/O

virtualization. AWS’s Firecracker [15] tailors a VM’s guest

kernel and virtual machine monitor (VMM) with minimal

components and a simplified I/O model. NEC’s LightVM [51]

links a hosted application into a tiny unikernel image un-

der a single address space for improved efficiency. With

such support/optimizations, secure containers allow appli-

cations to run efficiently with high-density deployment and

high-concurrency startup [36]. PVM introduces a novel high-

performance nested virtualization framework to run secur-

ing containers in VMs more efficiently.

Nested virtualization. There has been significant research

in performance improvement via both software and hard-

ware approaches. Turtles [20] and Neve [37] are two early

implementations of nested virtualization on x86 and ARM.

DVH [38] provides fourmechanisms (e.g., virtual passthrough,

virtual timers, virtual inter-processor interrupts, and virtual

idle) enabling 𝐿0 to directly expose virtual hardware to 𝐿2
curtailing exit multiplication. SVT [48] runs different VMs

and hypervisors on separate hardware threads, reducing the

costly context switches of VM traps via simple thread stall.

NestCloud [41] introduces three optimizations that include

guest page fault bypassing, virtual EPT, and PV VMCS, to

cut down the overhead of nested guests. BrFusion [17] and

Hostlo [17] address two networking issues of nested virtual-

ization. nOSV [44] presents a lightweight VMM based on the

microkernel that can house multiple Xen hypervisors with

minimal runtime overhead. In contrast, PVM introduces a

pure software-based design and implementation for nested

virtualization with significantly improved performance.

Software-based virtualization. Without hardware support,

the hypervisor must implement VM entry/exit and memory

virtualization via software [7, 13, 24, 25, 29, 50]. By com-

bining trap-and-emulate techniques with binary translation,

VMware Workstation 1.0 [24] provides an efficient way to

virtualize x86 architectures and enable the operation of mul-

tiple virtual machines on a single physical host. Lguest [7]

employs shared memory to enable the mapping of code in

the host and guest address spaces simultaneously, facilitating

VM entry/exit. HVX [29] leverages instruction replacements

and simulation to enhance virtualization. Xen-blanket [50]

provides blanket hypercalls for guests, replacing the origi-

nal vmcall-based hypercalls, thus avoiding the execution of

privileged vmcall instructions. These approaches rely on the

shadow paging mechanism for memory virtualization. How-

ever, recent widely adopted secure container technologies

rely heavily on the KVM hypervisor, which can effectively

utilize Linux subsystems by co-existing with the Linux ker-

nel and providing support for many advanced cloud-native

features (e.g., hotplugging, memory balloon, large pages,

and virtio). PVM, as a practical approach for cloud-native

environments, is built upon the KVM hypervisor and seam-

lessly integrates with the existing software stack of secure

containers. In addition, PVM’s PVM-on-EPT significantly

outperforms existing paging-based approaches.

7 Conclusion
This paper presents PVM, a minimal, high-performance, and

software-based hypervisor for nested virtualization. PVM

does not assume any hardware virtualization support and

thus is portable to any cloud systems based on KVM. As a self-

contained nested virtualization approach, PVM is transparent

to the underlying host hypervisor and does not affect the

security, complexity, or management of cloud platforms. We

have demonstrated that PVM is the only viable approach

with superior performance than hardware-assisted nested

virtualization. PVM has been adopted in Alibaba Cloud for

hosting secure containers, providing a more performant and

cost-effective option for cloud users.
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