FLAsHCUBE: Fast Provisioning of Serverless Functions
with Streamlined Container Runtimes

Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu
State University of New York (SUNY) at Binghamton

ABSTRACT

Fast provisioning of serverless functions is salient for server-
less platforms. Though lightweight sandboxes (e.g., contain-
ers) enclose only necessary files and libraries, a cold launch
still requires up to a few seconds to complete. Such slow pro-
visioning prolongs the response time of serverless functions
and negatively impacts users’ experiences. This paper ana-
lyzes the main reasons for such slowdown and introduces an
effective containerization framework, FLAsHCUBE. Instead of
building a container from scratch, FLASHCUBE quickly and ef-
ficiently assembles it through a group of pre-created general
container parts (e.g., namespaces, cgroups, and language run-
times). In addition, FLASHCUBE’s user-space implementation
makes it easily applicable to existing commodity serverless
platforms. Our preliminary evaluation demonstrates that
FLAsHCUBE can quickly provision containerized functions
in less than 10 ms (vs. ~400 ms using Docker containers).

1 INTRODUCTION

Cloud computing is moving firmly along a long tradition of
ever-higher-level abstractions with lower-complexity user-
facing interfaces. One current effort lies in serverless comput-
ing: Upon a simple Function-as-a-Service (FaaS) programming
model [1, 13, 14, 25, 29], cloud users program their in-cloud
applications as a set of serverless functions and provide such
functions to cloud providers. The deployment, management,
and runtime operations of these serverless functions are
taken care of by serverless platforms. Further, as resource
management is fully controlled by serverless platforms, it
creates a great opportunity for cloud providers to have better
cost efficiencies with more elastic resource management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLOS ’21, October 25, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8707-1/21/10...$15.00
https://doi.org/10.1145/3477113.3487273

38

Despite the advances in productivity, elasticity, and cost
savings that fuel the adoption of this new computing para-
digm, serverless platforms face new challenges in light of the
unique characteristics of FaaS-based serverless applications:
Unlike traditional, monolithic cloud applications, a serverless
application is decomposed into a collection of small, short-
lived functions. In a shared, multi-tenant cloud environment,
each serverless function must be encapsulated and running
in an isolated virtual execution environment (VEE), such
as virtual machines (VM) and containers, with restricted re-
sources and accesses for isolation. However, the construction
of a VEE is costly, especially for small, short-lived functions.

For instance, while the function code runs only for hun-
dreds of milliseconds, a serverless platform can take several
seconds to construct the VEE before the function execu-
tion — e.g., even with lightweight containers (detailed in
Section 3). This cold-start latency will be further amplified
for chained serverless applications, where a serverless ser-
vice involves a sequence of serverless functions [2, 4, 34, 36].
The resulted slow service response negatively impacts users’
experiences [20, 23, 33, 35].

A straightforward way to mitigate such cold-start latency
— commonly used by existing serverless platforms — is to
reuse an existing VEE instance (i.e., warm-start). It keeps
the same VEE instance for minutes or hours in anticipa-
tion of future execution. However, a function’s high mem-
ory demands make such an approach empirically unsustain-
able [22, 23, 26, 30]. Facing this limitation in warm-start, re-
ducing the cold-start latency remains a major research focus.
Recent efforts reduce the start-up overheads to millisecond-
scale by simplifying start-up steps. Still, the tradeoff comes as
either weakening the isolation guarantees between different
functions [40, 41] or modifying existing operating systems
(OS) and language runtimes [23, 24], limiting its applicability.

This paper tackles this problem by first performing an
empirical study of Linux containers to analyze the cold-start
latency and identify critical bottlenecks causing such a long
cold-start. We found that the container start-up requires a
long, complex construction pipeline and heavily relies on
excessive, expensive system calls and I/O operations. More
essentially, there is a lack of a single-cohesive abstraction
but rather a variety of fragmented isolation and security
mechanisms exposed by the OS kernel, making the container


https://doi.org/10.1145/3477113.3487273

PLOS ’21, October 25, 2021, Virtual Event, Germany

initialization process complex and costly. Our study moti-
vates us to propose a centralized, streamlined containeriza-
tion framework, FLASHCUBE. Instead of constructing a con-
tainer from scratch (i.e., via the basic isolation and security
primitives), FLASHCUBE constructs a container with a group
of pre-created container parts (e.g., root file systems, net-
work namespaces, cgroups, and program runtimes). Since
the creation of various container parts can be conducted
asynchronously and in advance, their creation latencies are
eliminated from the critical path of container provisioning.
We have implemented FLASHCUBE purely in the user space
and integrated it into OpenWhish [8]. Our preliminary eval-
uation demonstrates that FLASHCUBE significantly reduces
the provisioning time of containerized serverless functions
— less than 10 ms in the best case. We believe our observa-
tions, root cause analysis, and design of FLASHCUBE will cast
light on optimizing other sandboxing techniques (e.g., VMs,
gVisors, and unikernels) to fit in serverless platforms well.

2 BACKGROUND & RELATED WORK

Serverless computing allows cloud tenants to simply up-
load their application code to serverless computing plat-
forms [1, 13, 14, 25, 29], while the actual application deploy-
ment, management, and runtime operation are taken care
of by cloud service providers. Serverless brings two signifi-
cant benefits: (1) It allows developers to only focus on their
application logic (thus improving developer velocity) by ab-
stracting away the underlying server management; (2) It
creates an opportunity for cloud providers to improve the
efficiency of their infrastructure resource usage with elastic
resource management of serverless applications.

Current serverless techniques unanimously adopt a simple
Function-as-a-Service (FaaS) programming model, which al-
lows developers to program their applications as a collection
of functions. On the one hand, as each function has nar-
rowly focused business logic and can be developed, tested,
and deployed independently, it significantly improves devel-
oper velocity. On the other hand, as each function, executing
independently in response to specific events, can be automat-
ically scaled in/out on serverless platforms in response to
workload change, it enables great service elasticity. Finally,
as resources for serverless functions are fully controlled by
serverless platforms, more elastic resource management can
be achieved. As a result, serverless enables a cost-effective
pricing model in which users are charged for the actual
amount of resources consumed during the execution.

Isolation serves as the foundation in securing multi-tenancy
clouds for saferesource sharing between cloud tenants. Server-
less platforms also demand isolation for executing serverless
functions from different cloud tenants. There is a large body
of virtualization techniques providing isolated execution

39

Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu

sandboxes, such as VMs [18, 27], containers [5, 38, 43], and
many other lightweight virtualization designs [17, 21, 31, 42].
VMs ensure strong isolation but with high-performance over-
head due to multiple virtualization layers (i.e., VM kernels
and hypervisors); such overhead becomes more significant
and dominant when the hosting entity becomes a small func-
tion in serverless. Containers, on the other hand, remove VM
kernels and only rely on host kernel-level isolation, hence
being lightweight. However, such isolation is too weak to
be directly adopted in public clouds due to sharing the same
host kernel — kernel bugs can be exploited via a large attack
surface (e.g., 400+ system calls) [37, 44].

Other efforts [17, 42, 44] seek to address the tension be-
tween isolation and performance through minimization: AWS’
Firecracker [17] tailors a VM’s kernel with the minimal com-
ponents and simplified I/O model for mitigated performance
overhead. NEC’s LightVM [42] links a hosting application
into a tiny unikernel image under a single address space for
improved efficiency. Google’s gVisor [44] attaches a user-
space guest kernel (with a substantial portion of the Linux
surface) to a container for VM-like isolation. While these
efforts have blurred the isolation boundaries of traditional
VMs and containers, seeking to offer both security of VMs
and speed of containers, they remain incurring nontrivial
start-up latency — e.g., at least 100 ms to boot a minimized
Firecracker VM [17]. To further reduce such start-up latency,
recent approaches either added new host OS primitives to
skip the sandbox initialization [23] or modified language
runtimes to reuse the same sandbox for multiple invocations
of the same functions (e.g., Java runtime [24]). However, the
cost of these invasive approaches lies in the lack of compati-
bility with many existing commodity systems. In contrast,
we propose to preserve the existing isolation boundaries (ab-
stractions) set by the OS for better compatibility and adopt-
ability.

Containers [5, 16, 44], as an alternative to VMs, offer a much
lightweight, operating system (OS) level virtualization ap-
proach. Containers execute applications directly on the host
OS, while isolation between containers is enforced through
kernel-level features — e.g., namespaces [12] and cgroups [6].
Namespaces give each container its own view of system re-
sources such as the PID space, file systems, networks, etc.;
cgroups allow each container to have a fine-grained, precise
allocation of resources, such as CPU, memory, disk, and net-
work bandwidth. Processes running inside a container are
directly managed by the host OS, but they are treated as a
group and share the quota and limit in resource allocation.
Unlike VMs, the lack of virtual hardware abstraction and
direct execution on host OS allows containers to incur little
performance overhead, being lightweight. In addition, con-
tainers enable unprecedented portability for applications —



FLASHCUBE: Fast Provisioning of Serverless Functions with Streamlined Container Runtimes

3,000

O Others @ Metadata read
[ Metadata write O Other namespaces/cgroups
2,500 | O File-system namespace W Network namespace
“%2,000
E
1,500
R
o
21,000
=
S
@» 500
0

%
o]
-

O

Alpine

Debian
Ubuntu
Centos

Fedora

Mageia
MySQL
Redis

Mariadb

PLOS ’21, October 25, 2021, Virtual Event, Germany

Docker Runc: Runc: Runc: Runc:
Daemon CREATE PARENT CHILD INIT
i Process 1 Prockss 2 T Process 3 Process 4
@ Prepare filesysfem i [TReore |
e Fork/exec ..
@ 1/0 copy --- ——
@ State update - - - - - - - -5
e Clone _____._{ |
) @ 1/0 copy---[BI@ User ndmespace creation
Namegpagces creation
Clone,;
) ' Cgroups
Exit(0) creation
_____ Syncup______; Init
Exit(0) ' (network -
Syncul e - and file
_____ yneup Syncup (B State update ----' systems)
v A4 @® Exec applications

(b)

(a)
Figure 1: (a) Breakdown of start-up latency; (b) key steps involved in provisioning a container instance.

one can build an application in the form of a container image
(i-e., contains minimally what is needed to run a container-
ized application such as its binary code, libraries, and storage
data) and execute it on any host supporting containers. Due
to these, containers have been served as the default sandbox
in many serverless platforms [8, 25]. As discussed above,
containers cannot be directly adopted in public clouds due
to their weak isolation. Instead, a secure container runtime
can be enabled by running containers with lightweight VMs,
which uses hardware virtualization technology as a second
layer of defense [16]. Compared to other sandboxing tech-
niques (e.g., VMs or unikernels), containers closely depend
on OS abstractions (e.g., namespaces and cgroups) and in-
volve more complex initialization steps. In this paper, we
choose containers as the sandbox target to study the start-up
problems and explore unrevealed opportunities for fast and
efficient sandbox initialization.

3 ANALYSIS OF CONTAINER START-UP

We performed a study to analyze the cold-start latency on
Linux containers with a wide range of containerized func-
tions using HelloBench [28].

Experimental setup: All experiments were conducted on
the server equipped with one Xeon E5-2630 processor (2.2
GHz and 10 physical cores with hyper-threading disabled),
64 GB memory, and one 1 TB 7,200 RPM HDD. To construct
Linux containers, we used a commonly-used open source
containerization platform, Docker [5], which exploits vari-
ous Linux features (e.g., namespaces and cgroups) to allocate
storage, create networks, and isolate performance when con-
structing a Linux container. All experimental results were
averaged over five or more runs.

Figure 1a illustrates the cold start-up time from when the
Docker daemon receives a provisioning request to when
the container environment is completely ready (i.e., with all
required namespaces and cgroups provisioned). Note that

40

Figure 1a focuses on container-incurred initialization over-
head; thus, the start-up time of function code is not included.
In addition, entire container images (e.g., function code and
libraries) are cached locally to avoid network latency.

We observed that it took up to 2.4 seconds to complete a
single Linux container initialization before its encapsulated
function code executes. Such cold-start latency is relatively
consistent in spite of different containerized functions (ten
of them are listed in Figure 1a) and container runtimes (e.g.,
we used both Golang-based runC [11] and C-based Crun) —
mostly ranging from 1.6 seconds to 2.4 seconds. To pinpoint
the key factors causing the long container cold-start, we
performed a thorough code study of Docker:

(1) Serialized initialization pipeline: The construction of
a Docker container goes through a long, serialized pipeline,
as depicted in Figure 1b. It involves multiple (e.g., four) inter-
active processes for provisioning one containerized process.
Unlike VMs that rely on a core virtualization infrastructure
(e.g., with QEMU/KVM [19, 32]) for provisioning, there is
no single cohesive infrastructure for container construction.
Instead, the user-space container tool, e.g., Docker, must
invoke various types of mechanisms exposed by the Linux
kernel (e.g., namespaces, cgroup, and seccomp) through mul-
tiple auxiliary processes. These processes need frequent (and
slow) synchronization to coordinate the different initializa-
tion stages, such as allocating storage and network resources,
isolating allocated resources, and filtering system calls.

(2) Costly namespaces construction: Creating various
isolation components for a container instance contributes
more than 50% to the total cold-start latency, as illustrated
in Figure 1a (i.e., denoted as namespaces/cgroups). We ob-
serve that two dominant operations are the assembly of
file-system and network namespaces (longer than 1 second),
which is also aligned with prior investigations [40]. Our
study further found that the high cost is, again, because
there is no single-cohesive infrastructure during container



PLOS ’21, October 25, 2021, Virtual Event, Germany

Container Daemon

1
Requests: <lms |1 <10ms 1 i <10 ms :
AP ; RunC 1 RunC | . :
O;I:'en\/\{(hlsk ?Server @) Scheduler | Create Init ? Proxy(Entry Point) !
nvoker | 1] | 1 I
H Resources Pool | H . ! Func Func Func |
I 1 H I

1 1

— —— : :

B Critical path
[[] Critical Component
[J] Offline component

Container Runtime

T T T T T T T T AR LshCbe Con

Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu

Function Runtime

L__________tm%____l

Func Runtime
template

Forking

Figure 2: Architecture of FLASHCUBE.

construction. For example, a container instance’s virtual file-
system starts from a read-only container image to which a
containerized application/function is confined. Yet, unlike
VMs, although the read-only container image only contains
a portion of the root file-system, such as directories and files
with data and codes needed by the execution of container-
ized applications, a set of runtime specific files and folders
(e.g., under /etc, /var, and /run) need to be generated and/or
prepared during initialization, which is prohibitively slow.
Further, to make the virtual file system be the new root of
the container instance, it needs to be mounted via an overlay
file-system approach (e.g., AUFS or Overlay2). We found that
the initialization time for an overlay file-system could be
highly costly (e.g., hundreds of milliseconds).

Similarly, constructing a network namespace is also time-
consuming, as the user-space tool needs to delicately create
virtual network devices (e.g., a veth pair), connect them to the
external network via a container bridge, configure them with
the internal private IP addresses, map them to the external
network addresses, and finally place the container instance
to the newly constructed network namespace.

(3) Excessive I/Os and long latency: We observed that a

lot of I/O activities take place throughout the container ini-
tialization, which inevitably slows down the whole start-up

process. As shown in Figure 1b, such I/O operations mainly

include (1) creating/copying/reading configuration files across
multiple auxiliary processes, (2) updating/writing initializa-
tion status to a management database, and (3) populating

runtime files/folders for the file-system and network names-
paces. When we measured the results (shown in Figure 1a)

using a typical hard disk drive (HDD) setup, the first two I/O-
incurred overheads (e.g., denoted as metadata read/write)

contribute around 30% ~ 40% of the total cold-start latency.
We further eliminated slow HDD and used main memory as

the backing storage (i.e., ramdisk). This time, we observed

much lower cold-start latency, around 400 ms, confirming

excessive I/O activities during namespaces creation.

(4) Long function runtime initialization: Serverless plat-
forms allow developers to choose programming languages
in their preference — e.g., Java, Go, PowerShell, Node.js

41

400
350
2300
5250
[
200
—
150
-
5100
wn
50
0

EC ECPP @GO OPYTHON EJAVA mNODE]S

MIN AVG 95% MAX

Figure 3: Runtime start-up latency.

JavaScript, C#, Python, and Ruby are all supported languages
for AWS Lambda functions. In addition to the container sand-
box construction, before running the target function, the
function’s program runtime needs to be first loaded and ini-
tialized. We have measured the initialization latency of the six
common program language’s runtimes as shown in Figure 3.
The three widely used languages, Python, Java, and Node.js,
need significant time to load and initialize their runtimes,
e.g., around 70 ms for Java and more than 300 ms for Node.js.

To sum up, the existing general-purpose containerization
technique (e.g., Docker or LXC) relies on a variety of iso-
lation, security, and provisioning mechanisms exposed by
the OS kernel. While the abundant OS primitives and mech-
anisms enable great flexibility, as individual isolation and
security features can be continuously developed and updated,
simply piecing them together makes the whole container
initialization process complex and costly.

4 DESIGN OF FLASHCUBE

Our evaluation and analysis motivate us to propose a central-
ized, streamlined containerization framework, FLASHCUBE,
specialized for fast provisioning of containerized serverless
functions with mitigated cold-start latency. The design of
FLasHCUBE is based on the following simple idea. Instead of
constructing a container from scratch (i.e., via the basic isola-
tion and security primitives provided by the OS), FLASHCUBE
constructs a container with a group of pre-created container
parts (e.g., root file systems, network namespaces, cgroups,



FLAsHCUBE: Fast Provisioning of Serverless Functions with Streamlined Container Runtimes

Aruntime template |  Target function

process (e.g., JVM) process
- @ Load and execute
Runtime target function
Memory
Layout . © Restore all threads
(Parasite code)
@ Listen for] @ Fast multi-threading fork
fork requests|g 1o ]
———)| (Parasite code) ]
=
|

Figure 4: User-space runtime forking.

and program runtimes). Since the creation of various con-
tainer parts can be conducted asynchronously and in advance,
their creation latencies are eliminated from the critical path
of container provisioning,.

As illustrated in Figure 2, we have integrated FLAsSHCUBE
into a serverless platform, Apache OpenWhisk [8]. FLAsHCUBE
consists of three key components: (1) Container daemon re-
sponds to each container creation request from platform
invokers. Given a specific container creation request, the
scheduler of the container daemon retrieves necessary pre-
created container parts (e.g., namespaces, cgroups, and pro-
gram runtimes) from the resource pool and provides these
parts to (2) container runtime. Container runtime provisions
an init process from a (3) program runtime template (e.g.,
JVM) via a novel forking mechanism (introduced shortly)
and attaches all the container parts to the init process. After
those stages, a container sandbox sets to be ready with all
necessary namespaces, cgroups, and an init process run-
ning within a function runtime. Finally, the init process
converts itself to the target function (e.g., by loading binary
code), and the function code starts execution.

As we can see, the heavyweight namespace construction
and function runtime initialization are not in the critical
path of container provisioning. As a result, the container’s
cold-start latency reduces from ~ 400 ms (i.e., using ramdisk)
to ~10 ms with C-written functions and ~20 ms for Java-
written functions. Note that FLASHCUBE is a pure user-space
approach without any modifications to OS kernels or func-
tion runtimes, which preserves the portability property of
containers. Note that the effort to shorten container start-up
through pre-creation is not new. Mohan et al. [39] pre-creates
an empty container that is used to encapsulate future user
codes. However, the approach suffers from limited flexibility
under its rigid assumption that all user functions need the
same amount of resources and configurations. In contrast,
our approach pre-creates distinct container parts separately;
the parts can be used selectively for future requests.

42

PLOS ’21, October 25, 2021, Virtual Event, Germany

4.1 Container Parts

By pre-creating various container parts, FLASHCUBE provides
higher-level abstractions for container runtime to assemble a
container sandbox quickly. For instance, a containerized func-
tion’s virtual root file system can be pre-allocated/created
(offline) while attaching to a container instance on the fly
during its start-up (via mount and chroot operations). The
“attaching” process (in the critical path) is exceptionally light-
weight, requiring less than 1 ms for “mounting” the overlay
file system and several microseconds for “chroot”.

Pre-creation of container parts does consume extra sys-
tem resources. For example, to pre-create a virtual root file
system, a series of directories and folders need to be provi-
sioned, consuming both storage space and host file system re-
sources (e.g., allocation of inodes). Nevertheless, pre-created
container parts can be efficiently shared among functions
— concurrent invocations of the same serverless function
only need one shared pre-created (read-only) virtual root file
system and one individual writable folder for each container
instance. Different functions can still share the same base
virtual file system (e.g., from the same base file system). Fur-
thermore, since parallel invocations of the same function (i.e.,
from same cloud tenant) can trust each other, FLASHCUBE
allows multiple invocations of the same function to share
the same container for reduced resource consumption.

4.2 Container Runtime

FLasuCUBE’s container runtime serves as the assembler,
which attaches all the needed namespaces and cgroups (i.e.,
container parts) to an init process and configures the proper
privileges !, thus creating the final container sandbox for
executing the target function code. Unlike Docker’s default
container runtime written in the Go programming language,
FLasHCUBE’s container runtime is written in the C program-
ming language for high efficiency. As shown in Figure 1b, the
process of creating/joining namespaces and cgroups, con-
figuring capabilities (i.e., limiting access to files and fold-
ers), and filtering system calls (via seccomp) could be intri-
cate and error-prone [3]. We adopt the runtime validation
tool from Open Container Initiative (OCI) [7] to ensure that
FLasHCUBE’s runtime passes all runtime tests, thus to initial-
ize a container’s isolation environment with correct names-
paces/cgroups, capabilities, and seccomp configurations.

4.3 User-space Runtime Forking

FLasHCUBE mitigates the start-up latency of runtimes provi-
sioning via a novel and efficient user-space multi-threading
forking mechanism. Unlike existing approaches [23, 24],
FLAsHCUBE’s user-space approach does not need any new OS

IContainers start with restricted capabilities defining access privileges to
files/folders, allowed system operations, and filtered system calls.



PLOS ’21, October 25, 2021, Virtual Event, Germany

400

350 ] rfetwork
— O filesystem
v
g 300 O cgroup
§250 O seccomp
% 200 O other
3150
-
£ 100
99)

50
0

FlashCube

Docker SOCK (cold start) SOCK
Figure 5: Container start-up latency comparisons be-
tween FLASHCUBE, Docker container, and SOCK [40]

primitives and modifications to runtimes, preserving com-
patibility to existing commodity serverless platforms.

As shown in Figure 4, FLAsHCUBE prepares and maintains
a template runtime process for each programming language
(e.g., Python, Java, and Node.js). The template runtime pro-
cess pre-loads all common libraries in advance. Then, during
the provisioning of a new function, the function’s runtime
can be forked from the template runtime process — the copy-
on-write based forking is super fast (e.g., less than 10 ms).

More specifically, to add control logic into an existing
process in the user space, FLASHCUBE leverages the Linux
ptrace mechanism [10]. It pauses the normal execution of a
target template runtime process and injects the parasite code
(containing control logic) into it. Afterward, the parasite code
starts running and serves as a lightweight web server listen-
ing for the forking requests — from FLASHCUBE’s container
runtime for creating the init process (@ in Figure 4). Once
receiving a forking request, the parasite code uses the clone
system call to create a child process of the template runtime
process (). In the child process, the parasite code starts its
restoring steps to leave the parasite code execution and re-
sume the normal execution of the template runtime process
(®). To achieve this, FLASHCUBE leverages the sigreturn
mechanism [15], which allows the current process to jump
to a specified execution point (@). The execution point starts
the logic to connect to the container runtime (in Section 4.2)
for receiving the information of the target function, loads the
function code, and begins execution. Note that, FLASHCUBE’s
forking mechanism purely works in the user space and only
relies on existing kernel exposed primitives — ptrace and
sigreturn. It can be applied to any language runtimes with-
out any modifications to them.

5 PRELIMINARY EVALUATION

To evaluate FLASHCUBE's efficacy, We compared FLASHCUBE
with the default Docker container and the serverless-optimized
container approach, SOCK [40]. FLasuCuBE and Docker con-
tainer were evaluated with OpenWhisk [8]; SOCK was tested

43

Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu

under OpenLambda [9] — SOCK is by default integrated into
the OpenLambda platform. All other configurations are the
same as Section 3, except we used main memory as the back-
ing storage (i.e., ramdisk) for low I/O latency, thus highlight-
ing more container construction overhead.

Container start-up latency: As depicted in Figure 5, to
compare the start-up latency for container construction, we
ran a C-written “Hello” serverless function with three ap-
proaches. The Docker container approach takes 370 ms for
the container sandbox initialization. In contrast, FLASHCUBE
takes around 18 ms to build the exact same sandbox. The im-
provement shows that FLASHCUBE can yield substantial con-
tainer start-up latency reduction because the time-consuming

namespace/cgroup constructions are performed asynchronously

and in advance with FLASHCUBE. The pre-created container
parts are welded together during the container start-up, com-
pleted in a few milliseconds. Interestingly, while SOCK takes
160 ms to provision the first container instance of a server-
less function, the consecutive container provisioning takes
much less time — almost the same as FLASHCUBE. The time
difference is due to the “fork” server, which must be pro-
visioned first to serve a container creation. We further ob-
served that SOCK overly simplifies the container start-up
steps, weakening isolation guarantees. For example, SOCK
does not create a separate “mount” space for each container;
thus, a container user can escape its root path simply us-
ing “chroot” and “chdir”. In addition, SOCK does not support
seccomp (that could be time-consuming) to filter system calls
for individual containers. In contrast, FLASHCUBE completely
enables all isolation mechanisms as Docker containers with
a full validation through [7].

Function runtime start-up latency: So far, we have en-
abled FLAsHCUBE’s multi-threading forking mechanisms
upon JVM, which is a complex runtime target with multi-
threading. To compare the start-up latency for JVM construc-
tion, we ran a Java-written “Hello” function. Both Docker
and SOCK take ~70 ms to build up the JVM. In contrast,
FLasHCUBE takes only 10 ms to fork a multithreaded JVM
from the JVM template runtime process.

6 CONCLUSIONS

We have discussed the start-up latency of serverless functions
under Docker containers and identified that excessive, ex-
pensive system calls and I/O activities prolong the container
start-up process. Yet, we have demonstrated that the pro-
posed user-space containerization framework, FLASHCUBE,
can significantly reduce container start-up latency by effi-
ciently assembling pre-created container parts. Though chal-
lenging, extensions of FLASHCUBE to support other main
sandboxing techniques, such as Google’s gVisor and AWS’s
firecracker, are the subject of our ongoing investigations.



FLAsHCUBE: Fast Provisioning of Serverless Functions with Streamlined Container Runtimes

REFERENCES

(1]

[2

—

— —
' w
fla =

—_ —
. »
=

—
—
(=)

—

(18

=

[19

—

[20]

[21

—

[22]

(23]

“AWS Lambda,” https://aws.amazon.com/lambda/. [Online]. Available:
https://aws.amazon.com/lambda/

Chaining together lambdas: Exploring all the different ways to link
serverless functions together. https://www.refinery.io/post/how-to-
chain-serverless-functions-call-invoke-a-lambda-from-another-
lambda.

CVE-2019-5736 Detail. https://nvd.nist.gov/vuln/detail/CVE-2019-
5736.

Deathstarbench. https://github.com/delimitrou/DeathStarBench.
Docker, https://www.docker.com/.

“Linux control groups,” https://www.kernel.org/doc/Documentation/cgroup-

v1/cgroups.txt.

oci-runtime-tool. https://github.com/opencontainers/runtime-tools.
“Open source serverless cloud platform,”
https://openwhisk.apache.org/.

OpenLambda. https://github.com/open-lambda.

Playing with ptrace, Part L. https://www.linuxjournal.com/article/6100.
runc. https://github.com/opencontainers/runc.

“Separation Anxiety: A Tutorial for Isolating Your System with Linux
Namespaces,”  https://www.toptal.com/linux/separation-anxiety-
isolating-your-system-with-linux-namespaces.

Serverless. https://cloud.google.com/serverless/.

Serverless computing. https://azure.microsoft.com/en-us/overview/
serverless-computing/.

sigreturn(2) — Linux manual page. https://man7.org/linux/man-pages/
man2/sigreturn.2.html.

“The speed of containers, the security of VMs,” https://katacontainers.
io/.

A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419-434. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/agache

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, 2003.

F. Bellard, “QEMU, a fast and portable dynamic translator,
in 2005 USENIX Annual Technical Conference (USENIX ATC
05).  Anaheim, CA: USENIX Association, Apr. 2005. [Online].
Available: https://www.usenix.org/conference/2005-usenix-annual-
technical-conference/qemu-fast-and-portable-dynamic-translator

S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky, “Putting
the "micro" back in microservice,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX Association,
Jul. 2018, pp. 645-650. [Online]. Available: https://www.usenix.org/
conference/atc18/presentation/boucher

A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum,
“Includeos: A minimal, resource efficient unikernel for cloud services,’
ser. CLOUDCOM ’15. USA: IEEE Computer Society, 2015, p. 250-257.
J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“Seuss: Skip redundant paths to make serverless fast,” in Proceedings of
the Fifteenth European Conference on Computer Systems, ser. EuroSys
’20.  New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3342195.3392698

D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-millisecond startup for serverless computing with
initialization-less booting,” in Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS "20. New York, NY, USA:

44

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

PLOS ’21, October 25, 2021, Virtual Event, Germany

Association for Computing Machinery, 2020, p. 467-481.

V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas on a
diet,” in Proceedings of the 11th ACM Symposium on Cloud Computing,
ser. SoCC ’20. Association for Computing Machinery, 2020.

A. Ellis, “Introducing Functions as a Service (OpenFaaS).” https://blog.
alexellis.io/introducing-functions-as-a-service/.

A. Fuerst and P. Sharma, “Faascache: Keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 386-400.
[Online]. Available: https://doi.org/10.1145/3445814.3446757

1. Habib, “Virtualization with kvm,” Linux J., vol. 2008, no. 166, Feb. 2008.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1344209.1344217
T. Harter, “Hellobench,” 2015. [Online]. Available: https://research.cs.
wisc.edu/adsl/Software/hello-bench/

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” Elastic, vol. 60, p. 80.

Z. Jia and E. W. Qureshi, “Nightcore: Efficient and scalable serverless
computing for latency-sensitive, interactive microservices,” in Proceed-
ings of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS "21.
New York, NY, USA: Association for Computing Machinery, 2021.

A. Kantee, “The Design and Implementation of the Anykernel and
Rump Kernels, 2nd Edition,” 2016, http://book.rumpkernel.org.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “Kvm: the linux
virtual machine monitor,” in In Proceedings of the 2007 Ottawa Linux
Symposium (OLS’-07, 2007.

A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, ]. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics, in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 427-444. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/klimovic

S.Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating
function-as-a-service workflows,” in 2021 USENIX Annual Technical
Conference (USENLX ATC 21). USENIX Association, Jul. 2021, pp.
805-820. [Online]. Available: https://www.usenix.org/conference/
atc21/presentation/kotni

M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3:
Energy-efficient microservices on smartnic-accelerated servers,” in
2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 363-378. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/liu-ming

A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and
S. Bagchi, “SONIC: Application-aware data passing for chained
serverless applications,” in 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, Jul. 2021, pp. 285-
301. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/mahgoub

F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Ya-
sukata, C. Raiciu, and F. Huici, “My vm is lighter (and safer) than your
container,” in Proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 218-233.

D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” in Linux Journal, 2014.

A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomli-
nov, “Agile cold starts for scalable serverless,” in Proceedings of the 11th
USENIX Conference on Hot Topics in Cloud Computing, ser. HotCloud’19.
USA: USENIX Association, 2019, p. 21.


https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.refinery.io/post/how-to-chain-serverless-functions-call-invoke-a-lambda-from-another-lambda
https://www.refinery.io/post/how-to-chain-serverless-functions-call-invoke-a-lambda-from-another-lambda
https://www.refinery.io/post/how-to-chain-serverless-functions-call-invoke-a-lambda-from-another-lambda
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://github.com/delimitrou/DeathStarBench
https://www.docker.com/
https://github.com/opencontainers/runtime-tools
https://github.com/open-lambda
https://www.linuxjournal.com/article/6100
https://github.com/opencontainers/runc
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://cloud.google.com/serverless/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://man7.org/linux/man-pages/man2/sigreturn.2.html
https://man7.org/linux/man-pages/man2/sigreturn.2.html
https://katacontainers.io/
https://katacontainers.io/
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/atc18/presentation/boucher
https://www.usenix.org/conference/atc18/presentation/boucher
https://doi.org/10.1145/3342195.3392698
https://blog.alexellis.io/introducing-functions-as-a-service/
https://blog.alexellis.io/introducing-functions-as-a-service/
https://doi.org/10.1145/3445814.3446757
http://dl.acm.org/citation.cfm?id=1344209.1344217
https://research.cs.wisc.edu/adsl/Software/hello-bench/
https://research.cs.wisc.edu/adsl/Software/hello-bench/
 http://book.rumpkernel.org
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub

PLOS ’21, October 25, 2021, Virtual Event, Germany

[40] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,

(41

—

[42]

and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with
serverless-optimized containers,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX Association,
Jul. 2018, pp. 57-70. [Online]. Available: https://www.usenix.org/
conference/atc18/presentation/oakes

S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in 2020 USENIX Annual Technical
Conference (USENLX ATC 20). USENIX Association, Jul. 2020, pp.
419-433. [Online]. Available: https://www.usenix.org/conference/
atc20/presentation/shillaker

D. Williams, R. Koller, M. Lucina, and N. Prakash, “Unikernels
as processes, in Proceedings of the ACM Symposium on Cloud

45

[43]

[44]

Zhen Lin, Kao-Feng Hsieh, Yu Sun, Seunghee Shin, and Hui Lu

Computing, ser. SoCC ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 199-211. [Online]. Available:
https://doi.org/10.1145/3267809.3267845

E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The true cost of containing: A gvisor case study,” in
11th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
19). Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotcloud19/presentation/young
E. G. Young, P. Zhu, T. Caraza-Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “The true cost of containing: A gvisor case study,” in
11th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud
19), 2019.


https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1145/3267809.3267845
https://www.usenix.org/conference/hotcloud19/presentation/young

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Analysis of Container Start-up
	4 Design of FlashCube
	4.1 Container Parts
	4.2 Container Runtime
	4.3 User-space Runtime Forking

	5 Preliminary Evaluation
	6 Conclusions
	References

