
SDN-based Order-aware Live Migration of Virtual
Machines

Dinuni Fernando Ping Yang Hui Lu
Department of Computer Science, State University of New York at Binghamton, New York, USA, 13850

Email: {dferna15,pyang,huilu}@binghamton.edu

Abstract—Live migration is a key technique to transfer virtual
machines (VMs) from one machine to another. Often multiple
VMs need to be migrated in response to events such as server
maintenance, load balancing, and impending failures. However,
VM migration is a resource intensive operation that pressures
the CPU, memory, and network resources of the source and
destination hosts as well as intermediate network links. The live
migration mechanism ends up contending for finite resources
with the VMs that it needs to migrate, which prolongs the total
migration time and worsens the performance of applications
running inside the VMs. In this paper, we propose SOLive, a new
approach to reduce resource contention between the migration
process and the VMs being migrated. First, by considering the
nature of VM workloads, SOLive manages the order in which
multiple VMs are migrated to significantly reduce the total mi-
gration time. Secondly, to reduce the network contention between
the migration process and the VMs, SOLive uses a combination
of software-defined networking-based resource reservation and
scatter gather-based VM migration to quickly deprovision the
source host. A prototype implementation of our approach in
KVM/QEMU platform shows that SOLive quickly evicts VMs
from the source host with low impact on VMs’ performance.

I. INTRODUCTION

Cloud computing platforms increasingly use virtualization
to improve service availability and resiliency. Live migration
of virtual machines (VMs) is a key technique to migrate
running VMs from one machine (called “source host”) to an-
other machine (called “destination host”) in response to events
such as system maintenance, load balancing, and impend-
ing failures. Most hypervisors such as VMware [1], Hyper-
V [2], KVM [3], and Xen [4] support live VM migration, as
do a number of service providers in datacenters and cloud
infrastructure. For example, Google uses live migration in
their cloud infrastructure to perform over a million migrations
per month [5]. Amazon launched Server Migration Service
(SMS) [6], which provides services in EC2 to migrate virtual
machines running in VMware environment to the cloud.

It is not uncommon for servers or racks to fail in datacenters.
For example, [7] discusses the failure rate of Google datacen-
ters, which states that “In each cluster’s first year, it’s typical
that 1,000 machine failures will occur; one power distribution
unit will fail, bringing down 500 to 1,000 machines; 20 racks
will fail, each time causing 40 to 80 machines to vanish from
the network; there is about a 50 percent chance that the cluster
will overheat, taking down most of the servers in less than 5
minutes”. Upon imminent failure of a server, it is critical to
migrate all VMs running on the server quickly to prevent the
interruption of services to the users. As a result, a number

of optimizations have been applied to pre-copy [8], [9] and
post-copy [10], [11], two most widely used VM migration
techniques, to reduce the migration time, including dedupli-
cation [12]–[15], compression [12], [16], [17], swapping [18],
[19], and avoiding transfer of cached pages [20].

In cloud environment, a physical machine often hosts multi-
ple VMs. Upon imminent failure of a physical host, all of the
co-located VMs need to be migrated to other machines. Gang
migration techniques [12], [13] were proposed to simultane-
ously migrate a group of co-located VMs from one machine
to another. However, live VM migration itself is a resource-
intensive operation since the migration process continuously
utilizes CPU cycles, memory, and communication bandwidth
throughout the migration. Migration of multiple VMs pres-
sures the CPU, memory, and network resources of the source
and destination hosts as well as intermediate network links.
The live migration mechanism ends up contending for finite
resources with the VMs that it needs to migrate, which
prolongs the total migration time and worsens the performance
of applications running inside the VMs. In this paper, we
propose new techniques to reduce the resource contention
between the migration process and the VMs being migrated.

Specifically, existing gang migration techniques often treat
all VMs equally without considering the migration order based
on the VMs’ resource usage. However, our experimental re-
sults (Section IV) show that different VMs often have different
workload characteristics (e.g., memory, network, and CPU
intensiveness) and the order in which VMs are migrated out
of the source may lead to significant variations in the total
migration time. In this paper, we study the impact of the migra-
tion order on the total migration time and propose techniques
to manage the migration order to minimize the contention
between the migration process and the VMs running on the
source host. Our experimental results show that our order-
aware live migration approach can identify the migration order
with significantly reduced total migration time (e.g. by 80%).

We further propose to leverage the recent advances in
software-defined networking technology to dynamically re-
serve bandwidth on both the source and the destination nodes
to reduce the total migration time. The bandwidth reservation
is done through the dynamic traffic shaping (QoS) feature in
Open vSwitch [21]. The bandwidth reservation algorithm must
balance the total VM migration time and the performance of
applications running inside the VMs in order not to disrupt
services to users. To meet this requirement, our bandwidth
reservation mechanism takes into account how urgent it is

to migrate the VM, the available bandwidth, and the impact
of bandwidth reservation on the performance of applications
running inside the VMs. When it is infeasible to reserve the
same bandwidth on the destination as the source, we propose a
scatter gather mechanism to evict VMs from the source to one
or more intermediaries so that the source can still quickly evict
VMs and the destination can retrieve memory pages from the
intermediaries at its own pace. Our experimental results show
that, with 2-3 intermediaries, our scatter gather mechanism
enables us to quickly evict VMs from the source host to
intermediaries (up to 48% lower eviction time).

Organization: The rest of the paper is organized as follows.
Section II provides an overview of the pre-copy and post-copy
migration mechanisms and the software-defined networking
technology. Section III describes the architecture of SOLive,
our proposed SDN-based order-aware live VM migration
technique. Section IV presents algorithms for managing the
VM migration order in pre-copy and post-copy. Our bandwidth
reservation algorithm is given in Section V. Section VI dis-
cusses the related work and Section VII concludes the paper.

II. BACKGROUND

This section provides a brief overview of live VM migration
techniques and the software-defined networking technology.

A. Live VM Migration
Pre-copy [8], [9] and Post-copy [10], [11] are two widely

used live VM migration techniques. They are “live” because
the VM continues running during the migration.

Pre-copy live migration: With pre-copy, the VM’s memory
pages are transferred from the source host to the destination
host over multiple iterations. The first iteration transfers all
memory pages to the destination and the subsequent iterations
transfer only the pages modified in the previous iterations.
When the estimated downtime is less than a threshold, the
source machine pauses the VM and transmits the remaining
dirty pages, the hardware device state, and the CPU state to
the destination. The VM is then resumed on the destination.

Post-copy live migration: In post-copy, the VM is first sus-
pended on the source host. The CPU state is then transferred
to the destination host where the VM is resumed immediately.
Next, the source actively sends the remaining memory pages of
the VM to the destination host. If the VM accesses a memory
page that has not been received by the destination, then a
page fault occurs and the source sends the faulted page to
the destination. Compared to pre-copy in which a memory
page may be sent to the destination multiple times, post-copy
sends each page over the network only once. This yields lower
network overhead for memory write-intensive workloads.

B. Software Defined Networking
Traditional datacenters separate network for tenant and

management traffic. A major drawback of this approach is the
growth in complexity and administrative costs as the VM pop-
ulation grows. As a result, many datacenters such as Google
cloud [22] and Facebook [23] start using Software-defined net-
working (SDN) technology [24], [25] to configure and manage

Fig. 1: The architecture of SOLive.

network infrastructure. SDN can be used to facilitate efficient
network management to improve the network performance
and monitoring. SDN also provides the flexibility to install
packet processing rules and split network traffic dynamically
through OpenFlow [25]. OpenFlow uses QoS to tune the
network traffic in both inbound and outbound directions. The
queuing mechanism is used to apply traffic shaping policies
on outbound traffic. To control the inbound traffic, ingress
policing rules are added to the network interface file. With the
help of the centralized controller, OVS virtual switches and
OpenFlow protocol provide the provision to dynamically vary
the network bandwidth to a single or multiple routes by adding
policy rules and queues to the network topology.

III. SOLIVE : SDN-BASED ORDER-AWARE LIVE VM
MIGRATION

Figure 1 gives the architecture of SOLive, an order-aware
live VM migration technique that leverages the software-
defined networking (SDN) technology to reserve bandwidth
for the migration process. SOLive aims to reduce the total
migration time while at the same time, minimizing the perfor-
mance impact on applications running inside the VMs.

SOLive contains a resource tracking module that computes
the resource usages of each VM prior to migration. The mi-
gration scheduler manages the migration order of VMs based
on the resource usages of the VMs. The bandwidth reserva-
tion module reserves network bandwidth on both source and
destination hosts based on how urgent the VMs need to be
migrated, the resource usage of the VMs, and the available
bandwidth. The bandwidth reservation module also monitors
changes to the available bandwidth and dynamically adjusts
the reserved bandwidth during the migration. When it is
infeasible to reserve the same bandwidth on the destination as
the source (e.g. when the destination has very high incoming
network traffic), the scatter gather module deprovisions the
VMs’ memory state to one or more network middle-boxes
(network intermediaries), which temporarily hold VMs’ mem-
ory so that the destination node can retrieve the VMs’ memory
at its own pace. The scatter gather module also uses SDN to
reserve the incoming network bandwidth on the intermediaries.
The bandwidth reserved on each intermediate node depends
on the incoming network traffic on the intermediate node,
the bandwidth reserved on the source, and the number of
intermediate nodes.

C/M
/N

O
/N

I

C/M
/N

I/N
O

C/N
O
/M

/N
I

C/N
O
/N

I/M

C/N
I/M

/N
O

C/N
I/N

O
/M

M
/C/N

O
/N

I

M
/C/N

I/N
O

M
/N

O
/C/N

I

M
/N

O
/N

I/C

M
/N

I/C/N
O

M
/N

I/N
O
/C

N
O
/C/M

/N
I

N
O
/C/N

I/M

N
O
/M

/C/N
I

N
O
/M

/N
I/C

N
O
/N

I/C/M

N
O
/N

I/M
/C

N
I/C/M

/N
O

N
I/C/N

O
/M

N
I/M

/C/N
O

N
I/M

/N
O
/C

N
I/N

O
/C/M

N
I/N

O
/M

/C

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

Migration order

0

100

200

300

400

500

600

700

800

900

1000

1100

1200
To

ta
l
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

NI NO M C

Fig. 2: Time for migrating four VMs with 24 different migration
orders (pre-copy).

C/M
/N

O
/N

I

C/M
/N

I/N
O

C/N
O
/M

/N
I

C/N
O
/N

I/M

C/N
I/M

/N
O

C/N
I/N

O
/M

M
/C/N

O
/N

I

M
/C/N

I/N
O

M
/N

O
/C/N

I

M
/N

O
/N

I/C

M
/N

I/C/N
O

M
/N

I/N
O
/C

N
O
/C/M

/N
I

N
O
/C/N

I/M

N
O
/M

/C/N
I

N
O
/M

/N
I/C

N
O
/N

I/C/M

N
O
/N

I/M
/C

N
I/C/M

/N
O

N
I/C/N

O
/M

N
I/M

/C/N
O

N
I/M

/N
O
/C

N
I/N

O
/C/M

N
I/N

O
/M

/C

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

Migration order

0

10

20

30

40

50

60

70

80

90

100

110

120

To
ta

l
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

NI NO M C

Fig. 3: Time for migrating four VMs with 24 different migration
orders (post-copy).

IV. ORDER-AWARE LIVE VM MIGRATION

Existing gang migration techniques [12], [13] often treat
all VMs equally without considering the migration order
based on the VMs’ resource usage. However, different VMs
may have different memory size and often show different
workload characteristics such as memory, network, and CPU
intensiveness. Thus, different VM migration order may lead
to significant variations in the total migration time (TMT). In
this section, we study the impact of the migration order on the
TMT and propose techniques to manage the migration order
to minimize the contention between the migration process and
the VMs running on the source host.

A. Performance Impact of Migration Order

In post-copy, the time taken to migrate a VM depends on
the number of the VM’s non-zero pages and the migration
bandwidth. Let N be the size of the VM’s non-zero pages,
B be the migration bandwidth, and down be the downtime
(i.e. the time between suspending the VM on the source and
resuming the VM on the destination). The post-copy TMT
can be estimated as

N
B + down (1)

In pre-copy, the TMT can be estimated as
Σn

i=1(N
B × (S

B)i−1) (2)
where n is the number of iterations and S is the unique
page dirty rate (i.e. the number of unique pages dirtied per
second) [26]. The unique page dirty rate of a VM depends
on the VM’s workload, which is usually high for memory-
intensive VMs with a large working set. In addition, the
number of iterations is usually high when the VM’s unique
page dirty rate is high.

The migration bandwidth depends on the residual (i.e.
unused) bandwidth available on the source and the destination
hosts. The migration traffic mainly competes with the outgoing
VM application traffic at the source and the incoming VM
application traffic at the destination. This contention may
prolong the migration time and degrade the performance of
applications running inside the VM. Therefore, if a VM on
the source host has high outgoing network traffic but low
incoming network traffic, then migrating such a VM first may
help increase the network bandwidth available for migrating
the rest of the VMs and hence may reduce the TMT. Similarly,
if a VM has high incoming network traffic but low outgoing
network traffic, then after migrating the VM, the VM may
compete with the migration process on the incoming network
bandwidth and hence should be migrated at the end.

We conducted experiments to evaluate the impact of VM
migration order on the pre-copy and post-copy migration. Our
test environment consists of dual six-core 2.1 GHz Intel Xeon
machines with 128GB memory connected through a Gigabit
Ethernet switch with 1 Gbps full-duplex ports. A single
network link is used for both migration and VM application
traffic. VMs are configured with 1 vCPU and 2GB of memory.
Virtual disks are accessed over the network from an NFS
server which enables each VM to access its storage from
both source and destination hosts. We used pre-copy and post-
copy implementations that come bundled with KVM/QEMU
version 2.5.0 to migrate VMs. Each VM runs a CPU-intensive,
a memory write-intensive, an outgoing network-intensive, and
an incoming network-intensive application, respectively. Each
data point reported is an average of 3 runs of experiments.

CPU-intensive workload: We used Kernbench [27] as the
CPU-intensive workload, which compiles Linux kernel version
4.18.16 inside the VM during the migration.

Memory write-intensive workload: We used a C program
that repeatedly writes random numbers to 1.8GB main mem-
ory as the memory write-intensive workload. We choose this
synthetic benchmark because it enables us to vary the size of
the working set to dirty a large region of memory quickly.

Outgoing/incoming network-intensive workload: We used
iPerf [28] as network intensive workload. To generate outgoing
network traffic, the iPerf server runs on an external machine
(i.e. neither source nor destination) and the iPerf client runs
inside the VM. To generate incoming network traffic, the iPerf
server runs inside the VM while the iPerf client runs on an
external machine. The iPerf client continuously sends data to
the iPerf server through a TCP connection.

In the rest of the paper, we use NO, M, C, and NI to
represent the above outgoing network-intensive, memory-
intensive, CPU-intensive, and incoming network-intensive
VMs, respectively. Columns 2–5 in Table I give the number
of non-zero pages and the page dirty rate of the four VMs,
which shows that the memory-intensive VM has the highest
number of unique page dirty rate and non-zero pages.

Total migration time: Figures 2 and 3 give the TMT for
migrating the four VMs using pre-copy and post-copy, respec-

NO M C NI NO1 M1 C1 NI1
Number of non-zero pages 268694 518280 334725 276913 317696 430071 392307 322825
Unique page dirty rate 103 21062 3146 1118 926 4165 1825 1502

TABLE I: The number of non-zero pages and unique page dirty rate of eight VMs.

tively, with 24 different migration orders. The x-axis specifies
the migration order of VMs. For example, NO/NI/C/M speci-
fies that NO migrates first, followed by NI, C, and M.

Figure 2 shows that, when migrating the four VMs using
pre-copy, the migration order NO/M/C/NI has the lowest TMT,
which means that the network bandwidth affects the TMT of
the memory-intensive VM most. The TMT of NO/C/M/NI is
slightly higher than that of NO/M/C/NI, which means that the
migration order of CPU-intensive and memory-intensive VMs
is relatively less important when enough network bandwidth
is available. Our experimental results also show that migrating
a non-memory intensive VM requires much less network
bandwidth than migrating a memory-intensive VM and hence
the TMT of C/NO/M/NI and NO/M/NI/C is slightly higher than
that of NO/M/C/NI. When M is migrated after NI or before
NO, the TMT is high. Order NI/C/M/NO has the highest TMT
(about 2.5X higher than NO/M/C/NI) followed by NI/M/C/NO.

Figure 3 shows that the migration order also affects the
TMT of post-copy. Orders NO/M/C/NI and NO/C/M/NI have
the lowest TMT (about 53s), because migrating NO first
increases the network bandwidth available for migrating
other VMs and hence reduces the TMT of other VMs.
The figure also shows that the order of C and M does
not affect the TMT. This is because migrating C or M
does not increase the network bandwidth and the TMT of
post-copy depends only on the number of non-zero pages and
the network bandwidth, but not the dirty page rate. Similar
to pre-copy, order NI/C/M/NO has the highest TMT (116.39s).

Downtime: The downtime of migrating four VMs is 17s −
44s for pre-copy and 14ms − 19ms for post-copy. The high
downtime in pre-copy is due to the migration of the memory-
intensive VM M. In pre-copy, when M is suspended, almost
the entire working set of the VM is transferred. In post-copy,
the downtime is the time for transferring VM’s execution state,
which is often small. Our experimental results show that the
migration order NO/M/C/NI has the lowest downtime.

B. Migration Scheduling Algorithm

This section presents algorithms for managing VMs’ migra-
tion order based on the VMs’ workloads to reduce the TMT.
The resource usage of each VM was captured as follows.

CPU usage: The CPU usage of each VM was captured
using the PS Linux utility from the underlying source host.
We captured the CPU usage of all processes running inside a
VM for a period of time and then computed the average.

Memory usage: The number of non-zero pages of a VM is
computed by subtracting the number of zero pages (computed
using the is zero range function in QEMU) from the VM’s
total number of pages. In addition, we utilize the dirty page
tracking mechanism in KVM/QEMU to compute the unique
page dirty rate prior to migration.

Network usage: The network usage was measured by
capturing the total data packets received and transmitted over
the tap interface of each connected VM using the ifconfig
utility.

Figures 2 and 3 consider only one VM in each resource-
intensive category. In cloud environment, multiple VMs run-
ning on the same host may belong to the same resource
intensive category. It is also possible that each VM running
on a host is not resource intensive, but all VMs together are
resource intensive. In addition, a VM can be both memory and
CPU intensive, both network and memory intensive, or both
incoming and outgoing network intensive. Below, we present
algorithms for managing the migration order to reduce the
TMT in post-copy and pre-copy.

C. Post-copy Migration Scheduling

As described in Section IV-A, the TMT of post-copy can
be estimated as N

B + down, where N is the size of the
VM’s non-zero pages, B is the migration bandwidth, and
down is the post-copy downtime (which is usually very low).
Intuitively, the TMT could be reduced by first migrating VMs
with fewer non-zero pages and whose migration may increase
the bandwidth available for migrating the rest of the VMs.
Based on the above equation and our experimental results
in Figure 3, we propose a heuristic order-aware migration
algorithm to reduce the TMT in post-copy.

The algorithm first migrates VMs whose outgoing band-
width is higher than the incoming bandwidth in ascending
order of N

outgoing−incoming , where outgoing and incoming
represent the outgoing and incoming network usage of the
VM, respectively. This is because, the lower the N , the
less time it takes to migrate the VM, and the higher the
outgoing− incoming, the more outgoing network bandwidth
is released after the migration. Next, the algorithm migrates
VMs that have about the same incoming and outgoing net-
work usage, which does not affect the available bandwidth.
Finally, the VMs whose incoming bandwidth is higher than
the outgoing bandwidth are migrated in descending order of

N
incoming−outgoing . Such VMs are migrated at the end as
their new placement would increase the incoming bandwidth
usage on the destination and hence may reduce the bandwidth
available for migrating the rest of the VMs. In addition, VMs
with higher non-zero pages should be migrated when the
available bandwidth is higher to reduce the TMT.

We conducted experiments to evaluate our VM scheduling
algorithm. Our test environment is the same as that described
in Section IV-A. We migrated 8 VMs in which at least two
VMs belong to the same resource intensive category with dif-
ferent working set size or network usage. The top table of Fig-
ure 4 gives the benchmarks used in our experiment and their
resource intensive categories. C memory-intensive, kernbench,
iPerf outgoing-intensive, and iPerf incoming-intensive are the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
0

50

100

150

200

250

300

350

400

450
To

ta
l
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

NI1 NO1 M1 C1 NI NO M C

(a)

Abbr. Workload description
C Kernbench (CPU-intensive)
C1 perlbench (CPU-intensive)
M C memory-intensive (1.8GB working set)
M1 mcf r (memory-intensive, 0.6GB working set)
NO iPerf outgoing network-intensive
NO1 httperf outgoing network-intensive
NI iPerf incoming network-intensive
NI1 httperf incoming network-intensive

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

To
ta

l
m

ig
ra

ti
o
n
 t

im
e
 (

s
)

NI1 NO1 M1 C1 NI NO M C

(b)

Migration order # Migration order
1 M/M1/NO/NO1/C/C1/NI/NI1 22 NO/NO1/C/C1/NI/NI1/M/M1
2 M/M1/NO/NO1/NI/NI1/C/C1 23 NO/NO1/NI/NI1/M/M1/C/C1
3 M/M1/C/C1/NO/NO1/NI/NI1 24 NO/NO1/NI/NI1/C/C1/M/M1
4 M/M1/C/C1/NI/NI1/NO/NO1 25 NO/NO1/M/M1/C/C1/NI1/NI
5 M/M1/NI/NI1/NO/NO1/C/C1 26 NO/NO1/M1/M/C/C1/NI/NI1
6 M/M1/NI/NI1/C/C1/NO/NO1 27 NO/NO1/M1/M/C/C1/NI1/NI
7 C/C1/NO/NO1/NI/NI1/M/M1 28 NO1/NO/M/M1/C/C1/NI/NI1
8 C/C1/NO/NO1/M/M1/NI/NI1 29 NO1/NO/M1/M/C/C1/NI/NI1
9 C/C1/M/M1/NO/NO1/NI/NI1 30 NO1/NO/M1/M/C/C1/NI1/NI
10 C/C1/M/M1/NI/NI1/NO/NO1 31 NO1/NO/M/M1/C/C1/NI1/NI
11 C/C1/NI/NI1/M/M1/NO/NO1 32 NO/M/M1/C/C1/NO1/NI1/NI
12 C/C1/NI/NI1/NO/NO1/M/M1 33 NO/M/NO1/M1/C/C1/NI/NI1
13 NI/NI1/NO/NO1/M/M1/C/C1 34 NO/M/NO1/M1/C/C1/NI1/NI
14 NI/NI1/NO/NO1/C/C1/M/M1 35 NO/M1/NO1/M/C/C1/NI/NI1
15 NI/NI1/M/M1/C/C1/NO/NO1 36 NO/M1/NO1/M/C/C1/NI1/NI
16 NI/NI1/M/M1/NO/NO1/C/C1 37 NO1/M/NO/M1/C/C1/NI/NI1
17 NI/NI1/C/C1/M/M1/NO/NO1 38 NO1/M/NO/M1/C/C1/NI1/NI
18 NI/NI1/C/C1/NO/NO1/M/M1 39 NO1/M/M1/C/C1/NO/NI1/NI
19 NO/NO1/M/M1/C/C1/NI/NI1 40 NO1/M1/NO/M/C/C1/NI/NI1
20 NO/NO1/M/M1/NI/NI1/C/C1 41 NO1/M1/NO/M/C/C1/NI1/NI
21 NO/NO1/C/C1/M/M1/NI1/NI

Fig. 4: Total migration time for migrating 8 VMs with 24 different migration orders for (a) post-copy and (b) pre-copy.

benchmarks used in Figures 2 and 3. mcf r is a memory-
intensive benchmark in SPEC CPU 2017 [29], which has a
similar page dirty rate as the C memory-intensive program, but
with a smaller working set size (0.6GB). perlbench r is CPU-
intensive benchmark in SPEC CPU 2017 [29]. httperf [30] is
a benchmark for measuring the performance of Apache server
(version 2.4.18) in terms of outgoing and incoming network
traffic. When running separately on the source machine, httperf
outgoing-intensive (NO1) uses 43% of the outgoing network
bandwidth and httperf incoming-intensive (NI1) uses 78% of
the incoming network bandwidth.

When all the VMs are running on the source host at the
same time, the outgoing network usage of NO, NO1, NI,
and NI1 is 67.4%, 26.3%, 0.18%, and 1.8%, respectively,
and the incoming network usage of NO, NO1, NI, and NI1
is 0.28%, 0.64%, 14.52%, and 78%. The network usage of
M, M1, C, and C1 is about 0. Table I gives the number of
non-zero pages of all VMs. Figure 4(a) gives the time for
migrating 8 VMs using post-copy. The x-axis specifies the
migration order. In our experiment, we selected 41 orders out
of 8!(40320) possible orders, which are shown in the bottom
table of Figure 4. The orders were selected as follows. First,
we measured the time taken for migrating VMs that are in
the same resource intensiveness category together (orders 1-
24 in Figure 4). Similar to our 4-VM experiment in Figure 3,

the migration time is the lowest when the outgoing network-
intensive VMs are migrated first and the incoming network-
intensive VMs are migrated last. Based on the above results,
we chose another 17 orders that may have the lowest migration
time, in which at least one outgoing network-intensive VM is
migrated first and at least one incoming network-intensive VM
is migrated last.

Observe from the figure that, the TMT of order 19,
21, 26, and 28 are the lowest (about 108s). Our schedul-
ing algorithm chooses order 19 or 26, because NO has
lower N

outgoing−incoming than NO1 and NI has higher
N

incoming−outgoing than NI1.

D. Pre-copy Migration Scheduling

As shown in equation (2), the TMT of pre-copy depends
on the size of the VM’s non-zero pages N , the migration
bandwidth B, and the unique page dirty rate S. The lower
the N and S and the higher the B, the lower the TMT. This
section presents a heuristic algorithm to manage the migration
order of pre-copy based on the resource usage of VMs. The
algorithm is similar to the post-copy migration scheduling
algorithm except that pre-copy considers the unique page dirty
rate, while post-copy does not.

The algorithm first migrates the VMs that have higher
outgoing network usage than incoming network usage in
ascending order of N

outgoing−incoming , with VMs having low

unique page dirty rate migrated first. Such VMs are chosen
first because migrating them would increase the network
bandwidth available for migrating the rest of the VMs and
VMs having lower unique page dirty rate need lower network
bandwidth during the migration. Next, the algorithm migrates
VMs that have about the same outgoing and incoming network
usage. Finally, VMs with higher incoming network usage than
outgoing network usage are migrated in descending order of

N
incoming−outgoing with VMs having high unique page dirty
rate migrated first. This is because the new placement of such
VMs may reduce the available migration bandwidth and VMs
having higher unique page dirty rate need higher network
bandwidth during the migration.

Figure 4(b) shows that when migrating the 8 VMs using
pre-copy, order 19 has the lowest total migration time (597s)
followed by orders 26 (614s), 29 (617s), and 28 (617s). Our
scheduling algorithm chooses order 19 or 26, because NO and
NO1 are outgoing network-intensive whose unique page dirty
rate is low, NO has lower N

outgoing−incoming than NI prior
to the migration, and NI has higher N

incoming−outgoing then
NI1 just before NI and NI1 are migrated. When one or both
memory-intensive VMs are migrated between two outgoing
network-intensive VMs (orders 32–41), the TMT is higher
than migrating all outgoing network intensive VMs before
memory-intensive VMs.

E. Discussion

Migrating all VMs simultaneously does not always reduce
the TMT: Our experimental results show that the TMT of
migrating the four VMs in Figure 2 simultaneously using pre-
copy is 1.55x higher than migrating the 4 VMs sequentially
using order NO/M/C/NI due to the increase in the TMT of
M. When migrating NO and C simultaneously, followed by
M, and then NI, the TMT is slightly higher than NO/M/C/NI.
Similar observation has been presented in [31]. Studying the
impact of the migration order on parallel migration is part of
our future work.

V. MIGRATION BANDWIDTH RESERVATION

There can be a contention of network resources between
the migration process and the VMs running on the same
host. If the source has heavy outgoing network traffic or
the destination has heavy incoming network traffic, then the
bandwidth available for the migration process may be low
and hence may significantly increase the TMT. This section
presents a software-defined networking (SDN) based band-
width reservation algorithm, which reserves bandwidth for the
migration process and dynamically adjusts the bandwidth re-
served during the migration based on the available bandwidth.

Our bandwidth reservation was implemented using the QoS
traffic shaping feature of Open VSwitch [21], which provides
an interface to add network rules and policies dynamically
during VM migration. System administrators can use network
policies to change the network bandwidth dynamically for a
single or multiple interfaces. We reserve bandwidth for the
migration process by configuring the ingress traffic shaping.

For example, in order to reserve 75% outgoing bandwidth for
the migration process, we just need to distribute the remainder
of 75% (i.e. 25%), to applications running inside the VMs.
In addition, we also reserve higher outgoing bandwidth for
outgoing network-intensive VMs than other VMs.

A. Automatic Bandwidth Reservation Algorithm

This section presents an algorithm for automatically reserv-
ing the network bandwidth for the migration process on the
source and the destination.

a) Bandwidth reservation on the source: Algorithm 1
gives the pseudocode for reserving the outgoing network band-
width for the migration process on the source host. The initial
bandwidth reserved for the migration process is determined
based on the available outgoing bandwidth on the source prior
to the migration and how urgent the VMs need to be migrated.
It is called “initial” because the bandwidth reserved will be
adjusted during the migration. We use the term urgency level
(argument urgency in Algorithm 1), to specify how quickly
the VMs need to be migrated. The urgency level is provided
by system administrators, which specifies the percentage of
network bandwidth that should be reserved for the migration
process. Upon impending failure of the source host, the VMs
on the source host should be migrated as soon as possible, and
hence the urgency level should be high. When the source host
is taken down for routine server maintenance, the urgency level
should be low in order to minimize the performance impact on
applications running inside the VM. The algorithm compares
the available bandwidth and the urgency level, and picks the
larger number as the initial bandwidth (lines 2–4).

The reserved bandwidth needs to be dynamically adjusted
during the migration due to the following reasons. First,
the available bandwidth may change during the migration
either because a network-intensive VM has completed its
migration or because the network usage of some VMs changes
during migration. Secondly, the network bandwidth needed
for migrating different VMs may be different. For example,
migrating memory-intensive VMs requires higher bandwidth
than migrating CPU-intensive VMs. Our bandwidth reserva-
tion process periodically computes the available bandwidth on
the source host during migration. If the available bandwidth
is higher than a threshold defined by the system adminis-
trator (argument threshold), then the reserved bandwidth is
increased so that the migration process can use the available
bandwidth (Lines 9 - 10). Our bandwidth reservation process
also periodically computes the network bandwidth used by
the migration process. If the bandwidth used by the migration
process is close to the reserved bandwidth (which means that
all reserved bandwidth is used) and the urgency level is higher
than the reserved bandwidth, then the reserved bandwidth
is assigned the urgency level (lines 11 - 12). Otherwise, if
too much bandwidth is reserved for the migration process,
then the reserved bandwidth is assigned the current migration
bandwidth so that applications running inside the VMs can
use the released bandwidth (lines 13-14).

Algorithm 1 Bandwidth Reservation Algorithm
1: procedure reserve(threshold, urgency)
2: avail band = (1 - outgoing bandwidth usage

total outgoing bandwidth
) ∗ 100%;

3: //initial bandwidth reservation
4: reserve band = max(avail band, urgency);
5: //dynamically adjust reserved bandwidth during migration
6: while(migration is not completed)
7: avail band = (1- outgoing bandwidth usage

total outgoing bandwidth
) ∗ 100%;

8: mig band = current migration bandwidth
total outgoing bandwidth

∗ 100%;
9: if(avail band > threshold)

10: reserve band = reserve band + avail band;
11: else if(reserve band−mig band) < 1%) and urgency >

reserve band)
12: reserve band = urgency;
13: else if (reserve band −mig band > threshold)
14: reserve band = mig band ;
15: endif
16: endif
17: sleep for 1 second;
18: end while

b) Bandwidth reservation on the destination: The net-
work bandwidth available to the migration process depends on
both the available outgoing bandwidth on the source and the
available incoming bandwidth on the destination. As a result,
our bandwidth reservation process tries to reserve the same
bandwidth on the source and on the destination, if possible.
However, if the destination host has very high incoming
network usage, it may be infeasible to reserve the same
bandwidth on the source and on the destination, in order not
to significantly degrade the performance of network-intensive
applications running inside the destination VMs. The scatter
gather mechanism proposed in the next section is used to
handle the above situation.

B. Distributed In-memory Scatter Gathering

This section presents a Redis and SDN-based scatter gather
mechanism (ReS-based scatter gather), to handle the situation
where the destination has lower incoming bandwidth than the
outgoing bandwidth of the source. We use a metric called
eviction time introduced in [32] to represent how quickly the
source host can be taken offline or free resource that can be
re-purposed for other VMs.

Our ReS-based scatter gather was implemented on top of
the vanilla post-copy implementation on KVM/QEMU version
2.5.0. The basic idea is to scatter the memory pages from the
source to one or more intermediaries at its maximum speed
while the destination gathers memory pages from the interme-
diaries at its own pace. ReS-based scatter gather enables the
source host to quickly evict VMs upon impending failure. The
intermediaries can be any network middle-boxes that can work
together to accept pages at the same or higher bandwidth as
the transferring rate of the source, and have sufficient memory
and CPU resources to store and transfer memory pages. The
selection of intermediaries depends on what the migration is
used for. For instance, if the migration is used to rapidly
deprovision an entire rack of machines, then the intermediaries

Single Batch 5 Batch 10 Batch 20 Batch 30

Page scatter/gather count

0

10

20

30

40

50

60

70

P
e
r

p
a
g
e
 s

c
a
tt

e
r/

g
a
th

e
r

ti
m

e
 (

s
)

Scatter Gather

Fig. 5: Page scatter/gather time with single and batch retrieval

should be located at the destination rack so that the source can
be deprovisioned quickly.

In our ReS-based scatter gather, the source host first sends
the VM’s CPU and I/O state to the destination where the VM
is resumed immediately, and then actively pushes the rest of
pages to the intermediaries. To ensure that the destination host
reads each page from an intermediate node only after the page
has been written to the node, we installed Redis, an in-memory
distributed key-value store, on each intermediate node to store
the memory pages transferred from the source to the node.
With Redis, VM’s memory content can be staged without
having to deal with individual connections with multiple hosts.
The source host (i.e. the Redis client) writes VM’s memory
pages to Redis as key-value pairs. To uniquely identify each
page, the page address is used as the key. When the source
writes a memory page to Redis, it also sends the corresponding
control information directly to the migration manager on the
destination over a TCP connection. The control information
consists of the address of the corresponding page and the
optimizations applied (e.g. compression). This information is
used by the migration manager at the destination to gather
VMs’ memory pages from Redis. When migrating multiple
VMs using our ReS-based scatter gather mechanism, the keys
(addresses) of memory pages in different VMs may be the
same. To avoid key clashes, we create one Redis store for
each VM. Once a VM’s entire memory is evicted to Redis,
the VM can be deprovisioned at the source.

When a page fault occurs at the destination host, the
destination sends a page request to the source and the source
then sends the corresponding page to an intermediate node.
Each faulted request is transferred by the destination over
independent threads. If the VM at the destination faults on a
page that has already been written to Redis or the VM has been
deprovisioned at the source, then the faulted page is retrieved
from Redis.
Optimizations: Our experimental results show significant
delay when transferring pages one by one to Redis via the
synchronous write operation. To address this issue, we store
the memory pages locally in a buffer until the buffer reaches
to a user-defined batch size. The source machine then transfers
all pages in the buffer to the intermediaries as a single batch
write operation. Figure 5 shows that the batched transferring
has over 20x speedup for batch size 10. Although increasing

the batch size reduces the average time taken to transfer each
VM’s memory page, the batch size should not be too large.
Otherwise, the pages are held too long, which may in turn
trigger more remote page faults on the destination, and hence
may increase the TMT. Similarly, fetching pages in batches
helps reduce the average time spent on retrieving each page.

C. Evaluation

This section presents the experimental results of our band-
width reservation and ReS-based scatter gather techniques.
Our experimental environment is the same as that described
in Section IV-A. We obtained the performance results of
migrating four VMs in Figures 2 and 3.

Bandwidth reservation: As our bandwidth reservation
algorithm does not change the best migration order for the
same machine and network configuration, this section presents
only the experimental results of our bandwidth reservation
mechanism for the best migration order NO/M/C/NI. We
measured the bandwidth reserved during migration, the TMT,
the downtime, and the application performance.

Figure 6(a) gives the bandwidth reserved using our band-
width reservation algorithm when migrating four VMs using
NO/M/C/NI. The x-axis specifies the number of VMs running
on the source host, which is 4 prior to the migration. We
migrated the four VMs using urgency level 95%, 75%, and
55%. Prior to the migration, the available bandwidth is less
than the urgency level because of the outgoing network-
intensive VM running on the source. As a result, the initial
bandwidth reserved is the same as the urgency level. After
migrating the outgoing network-intensive VM, the available
bandwidth went up to almost 100%, and hence the reserved
bandwidth was changed to the available bandwidth. As a
result, when the urgency-level decreases from 95% to 55%,
the TMT increases only slightly in both pre-copy and post-
copy (Figures 6(b) and 6(c)), and the increase is due to the
difference in the TMT of the outgoing network-intensive VM.
In addition, the TMT with bandwidth reservation is about 13%
lower than that without bandwidth reservation in pre-copy, and
is about 7% lower in post-copy for all urgency levels.

When the urgency level decreases from 95% to 55%, the
downtime of pre-copy increases from 14s to 16s and the
downtime of post-copy increases from 10ms to 15ms.

We have also measured the impact of our bandwidth reser-
vation algorithm on the performance of Kernbench and the C
memory-intensive application. Our experimental results show
that there is no obvious degradation on the kernel compilation
time and the performance of C memory-intensive application
with and without bandwidth reservation.

Our bandwidth reservation vs. fixed bandwidth reser-
vation: Figures 7(a) and 7(b) give the TMT of NO/M/C/NI in
pre-copy and post-copy, respectively, when fixed bandwidth
(55%, 75%, and 95%) is reserved for the migration process.
The figure show that when the reserved bandwidth is fixed
at 75% and 55%, the TMT is significantly higher than that
without bandwidth reservation and that with our bandwidth
reservation algorithm.

ReS-based scatter gather: Figure 8 compares the eviction
time of our ReS-based scatter gather migration and the post-
copy migration for order NO/M/C/NI. We conducted experi-
ments on 1− 3 intermediaries.

When one intermediate node is used during the migration,
we reserved 900Mbits/s outgoing bandwidth on the source and
900Mbits/s incoming bandwidth on the intermediate node, and
vary the incoming bandwidth reserved on the destination from
500Mbits/s to 900Mbits/s. Our experimental results show that,
the eviction time of ReS-based scatter gather is better than
post-copy when the incoming bandwidth of the destination is
500Mbits/s and 600Mbits/s, and is worse otherwise.

When two intermediaries are used during the VM migration,
we reserved 900Mbits/s outgoing bandwidth on the source and
450Mbits/s incoming bandwidth on each of the intermediaries
so that the bandwidth reserved on the two intermediaries
together is the same as the bandwidth reserved on the source,
and vary the bandwidth on the destination from 500Mbits/s to
900Mbits/s. Our experimental results show that, the eviction
time of our ReS-based scatter gather with two intermediaries
is 12%−43% lower than that of post-copy, and 32%−36.6%
lower than that with one intermediary.

Figure 8 also shows that, when the number of intermediaries
increases, the eviction time is not always better if not enough
bandwidth is reserved on the intermediaries. For example,
when reserving 300Mbits/s incoming bandwidth for each
of the three intermediaries, which is 1/3 of the outgoing
bandwidth reserved on the source host, the eviction time
is better than post-copy when the incoming bandwidth of
the destination is 500Mbits/s and 600Mbits/s, and is worse
otherwise. The eviction time is also worse than that with 2
intermediaries. When the bandwidth reserved on each interme-
diate node increases to 450Mbits/s, the eviction time is better
than that with postcopy and with 2 intermediaries.

VI. RELATED WORK

A number of optimizations were proposed to reduce the
TMT and the network traffic of pre-copy and post-copy,
including deduplication [12], [32], [33], compression [12],
ballooning [11], [34], and enlightenment [35]. Techniques have
been developed to quickly evict VMs from the source host
upon imminent failure of the source [36], [37] and to reduce
the time for migrating multiple VMs [12], [18], [38]–[41].
A comprehensive study on selection of optimizations for pre-
copy is given in [42]. None of the above approaches considered
the migration order or used SDN to reserve bandwidth. The
above optimizations can also be used in SOLive to further
reduce the total migration time and downtime.

A number of researchers proposed VM placement tech-
niques to find the optimal placement candidates [43]–[46]
for migrating VMs. These techniques were used to identify
optimal destination candidates prior to VM migration, instead
of reducing the TMT during the migration.

vHaul [31] is used to migrate multiple VMs running multi-
tier web applications. vHaul uses separate network links for
migration traffic and workload traffic. Our work, in contrast,

4 3 2 1

No. of VMs left at source host

0

10

20

30

40

50

60

70

80

90

100

R
e
s
e
rv

e
d
 B

a
n
d
w

id
th

(%
)

Bandwidth reservation 95%

Bandwidth reservation 75%

Bandwidth reservation 55%

(a)

NO MEM CPU NI

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

0

100

200

300

400

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Precopy-without band reservation
Precopy-with band reservation (Urgency level 95%)
Precopy-with band reservation (Urgency level 75%)
Precopy-with band reservation (Urgency level 55%)

(b)

NO MEM CPU NI

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

0

5

10

15

20

25

30

35

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Postcopy-without band reservation
Postcopy-with band reservation (Urgency level 95%)
Postcopy-with band reservation (Urgency level 75%)
Postcopy-with band reservation (Urgency level 55%)

(c)

Fig. 6: Experimental results for NO/M/C/NI: (a) how reserved bandwidth changes after migrating each VM, (b) the TMT of pre-copy for
different urgency levels, (c) the TMT of post-copy for different urgency levels.

NO MEM CPU NI

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

0

200

400

600

800

1000

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Precopy -without bandwidth reservation
Precopy 95% bandwidth reservation
Precopy 75% bandwidth reservation
Precopy 55% bandwidth reservation

(a)

NO MEM CPU NI

NI - Network Incoming NO - Network Outgoing M - Memory C - CPU

0

5

10

15

20

25

30

35

40

To
ta

l
M

ig
ra

ti
o
n
 T

im
e
 (

s
)

Postcopy-without bandwidth reservation
Postcopy 95% bandwidth reservation
Postcopy 75% bandwidth reservation
Postcopy 55% bandwidth reservation

(b)

Fig. 7: The TMT with fixed bandwidth reservation using (a) pre-copy
and (b) post-copy.

500 600 700 800 900

Destination host incoming bandwidth (Mbit/s)

0

10

20

30

40

50

60

70

80

90

100

110

120

E
v
ic

ti
o
n
 t

im
e
 (

s
)

Post-copy SG - 1 Intermediary (900Mbits/s)

SG - 2 Intermediaries (450Mbits/s) SG - 3 Intermediaries (300Mbits/s)

SG - 3 Intermediaries (450Mbits/s)

Fig. 8: The eviction time of Post-copy and ReS-based Scatter-Gather
migration for order NO/M/C/NI.

uses the same network link for the migration and workload
traffic. Lu et al. [47] proposed to partition VMs into subgroups
based on the traffic affinities among VMs in wide area network
and migrate VMs collaborating on a job to the same data

center. Their goal is to reduce the inter-cloud traffic and
shorten the period of application performance degradation.
SOLive , in contrast, aims to reduce the TMT of VM migration
in local area network. Sharma et al. [48] developed techniques
to migrate nested VMs. Their work neither considered the
migration order nor used the SDN to reserve bandwidth.

A heuristic based algorithm was proposed in [39] to mitigate
network inconsistencies during VM migration using OpenFlow
based networks, which aims to maximize the number of VMs
migrated without violating the bandwidth reservation policy.
[49] and [50] estimate the required bandwidth for migration
based on the memory usage of applications running inside
the VM. In [40], [51], the authors proposed to estimate the
bandwidth needed to reserve for each iterative pre-copy cycle
by dividing the outstanding dirty memory pages over the
estimated migration time for a single iterative cycle. However,
the above bandwidth estimation approaches were rooted from
remedy [49] and can only be applied to the pre-copy migration.
Our approach, in contract, can be applied to reserve bandwidth
for both pre-copy and post-copy. The above approaches also
did not consider the migration order and the situation in which
the reserved bandwidth on the destination is less than that
on the source. In addition, [51] used simulation based testing
environment for bandwidth reservation, and [40] used Linux
traffic shaping interface, instead SDN, to reserve bandwidth.

VII. CONCLUSION

This paper presents SOLive, an SDN-based order-aware
live VM migration approach, to reduce the resource
contention between the migration process and the VMs
being simultaneously migrated. SOLive manages the order in
which multiple VMs are migrated and leverages the recent
advances in the software-defined networking technology to
reduce the total migration time. A prototype implementation
of our approach in KVM/QEMU platform shows that SOLive
quickly evicts VMs from the source host with low impact on
VMs’ performance.

Acknowledgement: This work is supported in part by the
National Science Foundation under grant OAC-1738929.

REFERENCES

[1] M. Nelson, B. H. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in USENIX Annual Technical Conference, 2005.

[2] Windows Hyper-V Architecture, https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/reference/hyper-v-architecture.

[3] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “Kvm: The
linux virtual machine monitor,” in Proc. of Linux Symposium, June 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[5] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs,
M. Baker-Harvey, and T. Sanderson, “Vm live migration at scale,” in
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pp. 45–56.

[6] Amazon Inc., “AWS Server Migration Ser-
vice,” https://docs.aws.amazon.com/server-migration-
service/latest/userguide/server-migration-ug.pdf.

[7] R. Miller, “Failure rates in google data centers,”
https://www.datacenterknowledge.com/archives/2008/05/30/
failure-rates-in-google-data-centers, 2008.

[8] M. Nelson, B. Lim, and G. Hutchins, “Fast transparent migration for
virtual machines,” in USENIX Annual Technical Conference, 2005.

[9] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in NSDI, 2005,
pp. 273–286.

[10] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,” in
VEE, 2009, pp. 51–60.

[11] M. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of
virtual machines,” In SIGOPS Operating Systems Review, July 2009.

[12] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration of
virtual machines,” in High Performance Distributed Computing, 2010.

[13] U. Deshpande, B. Schlinker, E. Adler, and K. Gopalan, “Gang migration
of virtual machines using cluster-wide deduplication,” in IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, May
2013, pp. 394–401.

[14] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. V. D. Merwe,
“Cloudnet: dynamic pooling of cloud resources by live wan migration
of virtual machines,” in Proc. of Virtual Execution Environments, 2011.

[15] P. Riteau, C. Morin, and T. Priol, “Shrinker: Improving live migration
of virtual clusters over wans with distributed data deduplication and
content-based addressing,” in Proc. of EURO-PAR, September 2011.

[16] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive, memory compression,” in Proc. of Cluster
Computing and Workshops, August 2009.

[17] P. Svard, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual
machines,” in VEE, 2011.

[18] U. Deshpande, D. Chan, T. Y. Guh, J. Edouard, K. Gopalan, and
N. Bila, “Agile live migration of virtual machines,” in IEEE International
Parallel and Distributed Processing Symposium, 2016, pp. 1061–1070.

[19] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian,
“VMware ESX Memory Resource Management: Swap,” in VMWare
Technical Journal, 2014.

[20] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live migration of
virtual machines using shared storage,” in VEE, 2013, pp. 41–50.

[21] Linux Foundation, “http://openvswitch.org/.”
[22] G. C. P. for Data Center Professionals, https://cloud.google.com/docs/

compare/data-centers/, 2017.
[23] S. M. Kerner, “Why facebook does sdn,” http://www.

enterprisenetworkingplanet.com/datacenter/why-facebook-does-sdn.
html, 2014.

[24] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 2007, pp. 1–12.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Computer Communication Revview,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[26] S. Nathan, U. Bellur, and P. Kulkarni, “Towards a comprehensive
performance model of virtual machine live migration,” in SOCC, 2015,
pp. 288–301.

[27] C. Kolivas., “Kernbench,” http://ck.kolivas.org/apps/kernbench/
kernbench-0.50/.

[28] iPerf, http://dast.nlanr.net/Projects/Iperf/.
[29] SPEC, https://www.spec.org/cpu2017/.

[30] D. Mosberger and T. Jin, “Httperf—a tool for measuring web
server performance,” SIGMETRICS Perform. Eval. Rev., vol. 26, no. 3,
pp. 31–37, Dec. 1998.

[31] H. Lu, C. Xu, C. Cheng, R. Kompella, and D. Xu, “vhaul: Towards op-
timal scheduling of live multi-vm migration for multi-tier applications,”
in 2015 IEEE 8th International Conference on Cloud Computing, June
2015, pp. 453–460.

[32] U. Deshpande, Y. You, D. Chan, N. Bila, and K. Gopalan, “Fast
server deprovisioning through scatter-gather live migration of virtual
machines,” in 2014 IEEE 7th International Conference on Cloud Com-
puting, June 2014, pp. 376–383.

[33] U. Deshpande, B. Wang, S. Haque, M. Hines, and K. Gopalan, “Memx:
Virtualization of cluster-wide memory,” in Proc. of International Con-
ference on Parallel Processing, September 2010.

[34] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, p.
181–194, 2002.

[35] Y. Abe, R. Geambasu, K. Joshi, and M. Satyanarayanan, “Urgent
virtual machine eviction with enlightened post-copy,” in ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, 2016, pp. 51–64.

[36] D. Fernando, H. Bagdi, Y. Hu, P. Yang, K. Gopalan, C. Kamhoua,
and K. Kwiat, “Quick eviction of virtual machines through proactive
live snapshots,” in 9th International Conference on Utility and Cloud
Computing, 2016, pp. 99–107.

[37] D. Fernando, J. Terner, P. Yang, and K. Gopalan, “Live migration ate
my vm: Recovering a virtual machine after failure of live migration,” in
IEEE INFOCOM, 2019.

[38] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “Cqncr:
Optimal vm migration planning in cloud data centers,” in 2014 IFIP
Networking Conference, June 2014, pp. 1–9.

[39] S. Ghorbani and M. Caesar, “Walk the line: Consistent network updates
with bandwidth guarantees,” in Workshop on Hot Topics in Software
Defined Networks, 2012, pp. 67–72.

[40] H. Liu and B. He, “Vmbuddies: Coordinating live migration of multi-
tier applications in cloud environments,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 4, pp. 1192–1205, 2015.

[41] S. A. Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu, “Vmflock: Vir-
tual machine co-migration for the cloud,” in Proc. of High Performance
Distributed Computing, June 2011.

[42] S. Nathan, U. Bellur, and P. Kulkarni, “On selecting the right optimiza-
tions for virtual machine migration,” in VEE, 2016, pp. 37–49.

[43] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolida-
tion manager for highly available applications,” IEEE Transactions on
Dependable and Secure Computing, vol. 10, no. 5, pp. 273–286, 2013.

[44] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, “En-
tropy: A consolidation manager for clusters,” in ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2009, pp.
41–50.

[45] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “Vdc planner:
Dynamic migration-aware virtual data center embedding for clouds,”
in IFIP/IEEE International Symposium on Integrated Network Manage-
ment, 2013, pp. 18–25.

[46] S. Al-Haj and E. Al-Shaer, “A formal approach for virtual machine
migration planning,” in Proceedings of the 9th International Conference
on Network and Service Management (CNSM 2013), 2013, pp. 51–58.

[47] T. Lu, M. Stuart, K. Tang, and X. He, “Clique migration: Affinity group-
ing of virtual machines for inter-cloud live migration,” in International
Conference on Networking, Architecture, and Storage, 2014.

[48] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, “Tenth european
conference on computer systems,” 2015, pp. 1–15.

[49] V. Mann, A. Gupta, P. Dutta, A. Vishnoi, P. Bhattacharya, R. Poddar,
and A. Iyer, “Remedy: Network-aware steady state vm management for
data centers,” in International IFIP TC 6 Conference on Networking,
2012, pp. 190–204.

[50] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” IEEE Transactions on Cloud
Computing, 2017.

[51] V. Mann, A. Vishnoi, A. Iyer, and P. Bhattacharya, “Vmpatrol: Dynamic
and automated qos for virtual machine migrations,” in workshop on
systems virtualiztion management (svm), 2012, pp. 174–178.

