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Abstract

This paper introduces LITESHIELD, a new userspace isola-
tion architecture for secure containers that reexamines the
boundary between user applications and system services.
LITESHIELD decouples traditional guest kernel functional-
ity into modular userspace microkernel (ukernel) services
that interact with guest applications via low-latency, shared-
memory-based inter-process communication (IPC). By serv-
ing most Linux syscalls in userspace, LITESHIELD enforces
a significantly reduced user-to-host interface, with just 22
syscalls, achieving strong isolation comparable to virtual ma-
chines (VMs) while avoiding the complexity of hypervisors
and hardware virtualization. LITESHIELD further provides a
POSIX-compatible runtime with fine-grained syscall intercep-
tion to support legacy applications and enables composable
ukernel services that can integrate specialized userspace com-
ponents (e.g., networking and filesystems). Our implementa-
tion demonstrates that LITESHIELD delivers strong isolation
with performance comparable to traditional containers.

1 Introduction

Due to high portability, high density, and low operational
cost, containers have been widely used for packaging, iso-
lating, and multiplexing cloud applications. In contrast to
virtual machines (VMs) (i.e., hypervisor-based virtualization),
containers execute applications directly on the native host
OS [8, 53, 61] and leverage kernel-level features, such as
namespaces [23], cgroups [16], and seccomp [20], to enforce
isolation between containerized applications. While the lack
of guest OSes and virtual hardware abstraction makes con-
tainers lightweight, they cannot be directly adopted as the
isolation mechanism in multi-tenancy clouds due to weak iso-
lation — sharing the same host results in a large attack surface,
e.g., 300+ system calls, or syscalls, in Linux. That is precisely
why, in today’s production systems, containers are deployed
within VMs for strong isolation [13, 37].

To address the tension between isolation and performance,
recent efforts [28, 56, 62] adopt the technique of minimiza-

tion, including tailoring a VM’s kernel with minimal com-
ponents [28], linking a hosted application into a tiny uniker-
nel image under a single address space [56], and attaching a
userspace guest kernel (with a substantial portion of the Linux
surface) to a container for VM-like isolation [62]. While these
efforts have blurred the isolation boundaries of VMs and con-
tainers, they share some common limitations. First, maintain-
ing a full guest kernel, even a minimized one, for each hosted
entity remains inefficient. Second, different applications re-
quire access to specific functionalities of the guest kernel,
rendering a “one-size-fits-all” guest kernel impractical, if not
impossible. Third, since some guest kernels have been min-
imized or even degraded to provide system functions at the
same level as userspace applications [56], these approaches
rely solely on hypervisors for isolation. However, hypervisors
have their share of vulnerabilities [27].

In this paper, we reexamine the isolation boundaries be-
tween user/kernel space for applications and kernel/system
services and explore a new isolation architecture for secure
containers, called LITESHIELD, to achieve lightweight yet
strong isolation. Inspired by the microservices architecture,
LITESHIELD decouples the closely-coupled guest kernel
and its hosted applications, or guest applications, as loosely-
coupled entities. Such decoupling allows the guest kernel to
operate as a collection of userspace microkernel (ukernel)
services, each running as regular userspace processes. Com-
munication between ukernel services and guest applications
is facilitated through efficient userspace inter-process com-
munication (IPC), eliminating costly syscalls.

The isolation architecture in LITESHIELD achieves strong
isolation with minimal overhead. First, LITESHIELD achieves
strong isolation by blocking direct host kernel access for guest
applications. Instead, they are served by userspace ukernel
services: By serving system services (e.g., networking and
filesystems) in the userspace, the user-to-kernel interface —
i.e., between pkernel services and the host — is significantly
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Figure 1: Comparisons of three representative isolation archi-
tectures: VMs, unikernels, and containers.
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reduced (e.g., from 300+ syscalls to 20+) and comparable
to VMs (e.g., 20+ hypercalls and 60+ VMEXxits). Even if a
malicious guest application exploits a ukernel service (via
userspace IPC), its access is limited to a restricted userspace
process (i.e., defense in depth like VMs). As communica-
tion between guest applications and ukernel services is fa-
cilitated through userspace IPC, LITESHIELD removes the
hypervisor and further reduces the attack surface. Further,
by hosting system services in userspace, LITESHIELD re-
places expensive cross-boundary invocation overheads (e.g.,
syscalls or VMEXxits/VMEntries) with fast (cache-to-cache)
IPC. Last, LITESHIELD supports composable ukernel ser-
vices, enabling seamless integration of specialized userspace
approaches [41,44,47,48] to deliver highly efficient userspace
system services, instead of relying solely on general-purpose,
monolithic, and hard-to-optimize in-kernel services.

To ensure compatibility with existing commodity kernels
(e.g., Linux) and legacy applications, LITESHIELD addresses
several challenges: First, the Linux kernel’s implementation
restricts certain syscalls (e.g., process and memory manage-
ment) from being executed in a separate process, complicating
the operation of ukernel services as independent userspace
processes. To address this, LITESHIELD categorizes syscalls
into delegable syscalls, which are redirected to LITESHIELD’s
ukernel services for processing, and non-delegable syscalls,
which are trapped, monitored, and validated before being exe-
cuted within the same process via an arbitration mechanism.
To further support legacy applications, LITESHIELD provides
a POSIX-compatible library that supports runtime injection
and fine-grained syscall interception, enabling seamless redi-
rection of delegable syscalls from legacy applications to
userspace ukernel services, without any binary modifications.
Last, to achieve high performance, LITESHIELD employs a
userspace IPC mechanism with a shared memory region and
polling-based threads to facilitate low-latency communication
between guest applications and ukernel services.

Our current implementation of LITESHIELD supports most
of the Linux kernel syscalls in userspace required by regu-
lar guest applications (i.e., those not running with root privi-
leges) and achieves a thin user-to-host interface with only 22
syscalls that need the support of the host kernel (compared
to 20+ hypercalls and 64 VMEXxits for KVM-based VMs),
while significantly reducing both the software codebase (elim-
inating the need for a hypervisor and QEMU-based emulator)
and hardware complexity (requiring no hardware virtualiza-

tion). We have ported an existing userspace network stack,
f-stack [9], and implemented an ext 2-like userspace filesys-
tem as userspace networking and filesystem ukernel services.
Porting f-stack to LITESHIELD only required 400+ lines of
code. By leveraging lightweight userspace pkernel services
and fast shared memory-based IPC between guest applica-
tions and pkernel services, LITESHIELD delivers performance
comparable to traditional containers.

2 Motivation

2.1 Cloud Native and Isolation

IT companies are under constant pressure to simplify their
product development with shortened production cycles to
adapt to changing markets and diverse demands. Cloud-native
technologies are poised to tackle this pressing challenge. First,
developers decompose a traditional monolithic application
into graphs of single-purpose, loosely-coupled microservices.
As each microservice focuses on a small subset of the mono-
lithic application’s functionality, this microservices-based
architecture reduces development complexity and increases
code velocity [1, 3,4, 6, 12]. Further, cloud-native platforms
deploy, manage, and scale microservices completely for cloud
tenants, further liberating them from the management of vir-
tual servers (i.e., serverless for tenants). The use of cloud-
native technologies is becoming pervasive: Companies like
Amazon, Netflix, Twitter, Uber, and eBay have adopted the
microservices architecture [5,7, 10, 17,26]. In addition, a
proliferation of serverless platforms enables a simple way,
i.e., via Function-as-a-Service (FaaS), to build and execute
cloud-native applications [2, 24,25, 35, 36].

Isolation ensures safe resource sharing by preventing cloud
tenants from accessing each other’s shared resources. With-
out enforcing isolation, a malicious user could steal sensitive
information from victims [54, 60, 63, 64], or an aggressive
user might degrade the performance of others [49].

State-of-the-art virtualization techniques provide isola-
tion via full-blown VMs [14, 58], micro-VMs [28,62], con-
tainers [8, 53, 61], microkernels [30,43,52], and unikernels
[31,40,42,57]. As illustrated in Figure 1, VM-based virtualiza-
tion achieves isolation through a virtual hardware interface,
allowing each VM to operate with a fully functional guest
operating system (OS). Since the virtual hardware interface
differs from real hardware, it is further supervised by another
software layer, the hypervisor. The virtualization architecture
provides a strong security boundary between sandboxed ap-
plications in VMs due to: 1) a minimal attack surface between
VMs and the native host (e.g., tens of hypercalls or VMEXits);
and 2) defense-in-depth, where both the guest OS and hyper-
visor contribute to security. However, this defense-in-depth
approach introduces non-trivial performance overhead by lay-
ering guest kernels and hypervisors, resulting in costly inter-
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actions across multiple layers of the virtualization stack for
CPU, memory, and I/O virtualization. Microkernels improve
isolation by minimizing kernel functionality and shifting OS
services, such as file systems and drivers, to userspace, reduc-
ing the attack surface and improving fault isolation. Notably,
seL4 [43] offers formal verification guarantees, while systems
like Barrelfish [30] and Arrakis [52] extend this model to mul-
ticore and I/0-optimized architectures. Though well-suited
for specialized, high-assurance systems, microkernels often
face challenges with performance due to IPC overhead and
supporting legacy applications. These factors limit usability
in general-purpose cloud-native environments.

In contrast, containers execute applications directly on the
native host OS [8,53,61]. Kernel-level features, e.g., names-
paces [23], cgroups [16], and seccomp [20], enforce isolation
between containerized applications. While the lack of vir-
tual hardware abstraction makes containers lightweight, they
cannot be directly adopted as the isolation mechanism in
multi-tenant clouds due to weak isolation — i.e., sharing the
same host results in a large attack surface (e.g., 400+ sys-
tem calls, or syscalls, in Linux). While modern OSes have a
“whitelisting” mechanism (e.g., seccomp) allowing containers
to transition into a restricted mode with a narrowed syscall in-
terface, the common problem is that it is difficult to determine
what syscalls an application may use. Default whitelisting
policies still tend to be large, e.g., 250+ syscalls [21].

Recent efforts [28, 50, 62] aim to balance isolation and
performance through minimization. For example, AWS’s Fire-
cracker [28] optimizes a VM’s kernel by including only essen-
tial components and adopting a simplified /O model. NEC’s
LightVM [50] integrates a hosted application into a minimal
unikernel image within a single address space for greater
efficiency. Google’s gVisor [62] employs a userspace guest
kernel, incorporating a significant portion of the Linux inter-
face, to provide VM-like isolation for containers.

2.2 Limitations

Unfortunately, cloud native presents new and pressing chal-
lenges to existing virtualization techniques. /) High perfor-
mance overhead: Unlike monolithic applications, a cloud-
native application consists of numerous distributed microser-
vices, each requiring sandboxing, which significantly ampli-
fies the performance overhead and memory footprint. More-
over, virtualization overhead becomes more pronounced com-
pared to monolithic applications, as each hosted microservice
is typically smaller and more ephemeral (e.g., high startup
overhead). 2) Generality vs. specialization: The increasing
diversity of microservices necessitates specialized system ser-
vices, such as customized network stacks [51] or specialized
file systems [47]. However, existing virtualization techniques
for isolation continue to rely on general-purpose, one-size-
fits-all guest kernels. While these kernels are often highly
optimized [28], they struggle to meet the varied and specific
requirements of diverse microservices. Furthermore, despite

recent advancements in high-performance networking and
file systems [41,47, 51], there is no practical way to seam-
lessly integrate these technologies with general applications
or microservices. 3) Large attack surface. Although the user-
to-host interface for VM-based virtualization is thin, the code
responsible for virtualization and isolation remains large. This
includes both the hypervisor, which resides in the host kernel
(i.e., type-2 hypervisor) and interacts with hardware mainly
for CPU and memory management, and the QEMU-based Vir-
tual Machine Monitor (VMM), which operates in userspace
primarily for device emulation. According to the Common
Vulnerabilities and Exposures (CVE) database, 184 vulner-
abilities have been reported in major hypervisors (e.g., Xen,
KVM, Hyper-V) since 2007, with 33% of these occurring
in the past 1.5 years. Additionally, the VMM is huge (e.g.,
QEMU-based VMM has more than 1.4 million lines of code)
and can access the host via the whole syscall interface.

2.3 Threat Model and Assumptions

In this paper, we focus on security vulnerabilities and iso-
lation mechanisms in general-purpose monolithic kernels
(e.g., Linux). We share the common isolation assumptions
as VMs/unikernels [56,62]: We trust fundamental hardware-
based protections — such as page tables and CPU execution
modes — that ensure strong isolation between different pro-
cesses and between user and kernel execution within the same
process. We focus on software deficiencies in host kernels,
guest kernels, and hypervisors that can be exploited through
their exposed user-to-host interfaces, namely, system calls and
hypercalls, which constitute the main attack surface. There-
fore, our threat model is that one malicious user could break
out of the isolation by compromising the user-fo-host inter-
face. Two metrics are used to evaluate the attack surface: 1)
the size of the user-to-host interface and 2) the amount of
code accessible through the interface. Other attacks, such as
covert channels and side channels, pose security risks by en-
abling unauthorized communication and information leakage
through unconventional pathways. Existing software-based
isolation approaches, including VMs, microVMs, unikernels,
and others, are susceptible to these attacks. Although elimi-
nating all side and covert channels is challenging due to the
complexity of hardware and software interactions, existing
measures, such as secure hardware designs, strict resource
isolation, and the introduction of system randomness, can be
orthogonally applied to software-based isolation approaches.

3 Design of LITESHIELD

We present LITESHIELD, a novel sandboxing architecture
providing strong yet lightweight isolation for secure con-
tainers. Drawing inspiration from the microservice architec-
ture, LITESHIELD offers on-demand, composable guest ker-
nel/system services to cloud-native applications, functioning
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Figure 2: Architecture of LITESHIELD.

as userspace microkernel (ukernel) services. (Figure 2).

LITESHIELD’s core innovation lies in decoupling guest
applications from their hosting guest kernels, running them as
separate userspace entities. Each application process acts as a
client, while all required pkernel services are combined to pro-
vide system services. Clients interact with userspace pkernel
services through fast inter-process communication (IPC) chan-
nels (§3.2). System calls made by a guest application are in-
tercepted and redirected to the appropriate userspace ukernel
service, which handles the request mostly within the userspace
while only contacting the host kernel for (a limited number of)
privileged operations, resulting in a thin user-to-host interface
(comparable to VMs). To prevent malicious applications from
bypassing the interception library and making direct system
calls to the host kernel, LITESHIELD employs seccomp [20],
effectively blocking unauthorized “direct” syscalls.

LITESHIELD inherits advantages from the microservices
architecture, such as modular development, flexible deploy-
ment, and rapid iteration. Userspace pkernel services can be
gradually and individually developed, extended, replaced, cus-
tomized, and integrated with other existing/ongoing userspace
systems [41,47,51]. In addition, while hardware specializa-
tion is accelerating in cloud [18], LITESHIELD can quickly
support specialized hardware (e.g., GPU, smart NICs, and
persistent memory) with userspace support, making new, ad-
vanced hardware accessible by specific cloud-native applica-
tions (e.g., machine learning tasks).

3.1 Strong Isolation via Thin Interface

As shown in Figure 2, LITESHIELD achieves a level of isola-
tion comparable to VMs and unikernels, maintaining a simi-
larly thin user-to-host interface (i.e., requiring tens of syscalls
to the host, compared to 300+ for containers).

First, guest applications have no direct access to the
host kernel. LITESHIELD enforces this restriction by using
seccomp to block all direct syscalls from guest applications,
i.e., by applying a seccomp profile that denies all syscalls
by default. Second, userspace ukernel services are permitted
to access the host kernel when necessary. To ensure that the
user-to-host interface remains thin, seccomp is also applied
to these services, allowing only a minimal set of explicitly
defined syscalls through a restrictive profile. The rationale is
simple: “the more done in userspace, the less needed in the
kernel”. For example, the unikernel approach [56] reduces

Thin user-to-host

interface

Figure 3: Fast userspace inter-process communication (IPC).

«
Dynamically-linked Shared buffer

IPC library.
l Host OS

syscall or hypercall usage to fewer than ten by shifting most
system functions into userspace. Similarly, LITESHIELD per-
forms most guest kernel functions, such as file and filesystem
management, networking, and IPC, entirely within userspace,
thereby minimizing interactions with the host kernel and
achieving a thin user-to-host interface.

Unlike the unikernel approach, which embeds guest ker-
nel functions in the same address space as guest applica-
tions, LITESHIELD executes these functions within more
flexible and independent pkernel services. However, cer-
tain syscalls, namely non-delegable ones, must be executed
within the context of the same process, such as process
management (e.g., fork, clone, wait, and exit) and mem-
ory management (e.g., mmap, munmap, mprotect, msync, and
madvise). A straightforward solution would make the kernel
LITESHIELD-aware by introducing kernel support to convert
non-delegable syscalls to delegable ones, allowing them to ex-
ecute in the context of another process. LITESHIELD, instead,
focuses on compatibility with the unmodified Linux kernel
and realizes an arbitration mechanism to handle the execu-
tion of the non-delegable syscalls. Specifically, LITESHIELD
permits guest applications to execute non-delegable syscalls
by explicitly allowing them in the seccomp profile. However,
it leverages Linux’s pt race mechanism to trap and monitor
these syscalls through LITESHIELD’s core ukernel service
(§3.3). When a guest application is launched, it is registered
as a tracee of the core ukernel service before execution begins.
Thus, any subsequent invocation of a non-delegable syscall
is intercepted by the core service, allowing LITESHIELD to
perform sanity checks or other forms of inspection [34, 38]
before permitting the syscall to proceed. This mechanism en-
ables fine-grained monitoring of non-delegable syscalls while
maintaining compatibility with the existing Linux kernel.

Since guest applications can only access the host kernel via
LITESHIELD, even if a malicious guest application exploits a
bug in a pkernel service of LITESHIELD (e.g., through IPC
channels), it can only gain access to a restricted userspace pro-
cess (i.e., defense in depth). As the communication between
guest applications and ukernel services is through userspace
IPCs or arbitrated syscalls, LITESHIELD eliminates the hy-
pervisor, further minimizing the attack surface for isolation.
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3.2 Lightweight Isolation via Fast IPCs

One key goal of LITESHIELD is to provide strong isolation
with much less overhead than VM/unikernel-based isolation
to legacy applications, better, with performance comparable
to that of “lightweight” containers.

Containerized applications request system services via
syscalls from the kernel space. This mechanism is actually
costly, as it involves same-core user/kernel mode transitions,
cache pollution, and data movement across the kernel/user
space, consuming microseconds [55]. In addition, the “one-
size-fits-all” monolithic kernel services could be suboptimal
for many new application scenarios [45, 46]. The general-
ity of monolithic kernels makes optimization difficult, and
vertical integration efforts are often broken by upstream
changes [51]. On the other hand, recent userspace and hy-
brid approaches [32, 39, 41, 44,47, 48, 59] have been pro-
posed to mitigate such overhead by redistributing functions
between user and kernel space, demonstrating superior per-
formance compared to in-kernel services. Following this di-
rection, LITESHIELD runs most kernel services in userspace,
achieving a thin user-to-host interface (and strong isolation)
while also enabling the potential for high performance through
various specialized userspace approaches.

Guest applications request system services from userspace
ukernel services through IPC channels, instead of syscalls. As
shown in Figure 3, LITESHIELD develops a high-performance
shared-memory-based IPC mechanism for fast system service
delivery. First, each application is assigned a shared mem-
ory buffer. When an application makes a request, it places the
syscall number and arguments in the shared buffer and toggles
a flag to let the ukernel services know that a request has been
made. Once the request has been completed, the ukernel ser-
vice puts the response in this buffer and toggles the flag to let
the guest application know it is done. This approach draws in-
spiration from existing userspace communication techniques,
e.g., RDMA, and incorporates a polling-based mechanism
to reduce communication latency: A core ukernel service
for IPCs employs a dedicated polling thread to continuously
monitor for incoming IPC requests from guest application pro-
cesses. Upon detection of a request, this thread promptly han-
dles it — by forwarding it to one of the composable userspace
ukernel services (e.g., networking or file systems). Similarly,
application processes use another polling thread to actively
wait for and immediately process responses from the IPC
ukernel service. Second, LITESHIELD leverages a multi-core
system (common today) to place application processes and
userspace ukernel services on separate cores — i.e., avoiding
same-core context switches. This separation precludes context
switching on the same core and further minimizes communica-
tion latency between guest applications and ukernel services.
Since the context switch overhead for userspace processes
is typically lower than that of virtual CPUs, LITESHIELD’s
userspace solution is expected to outperform VMs even with
core multiplexing. Finally, the communication latency under

the proposed shared-memory-based IPC mechanism mainly
hinges on the memory access latency. If the cores for the
application and the userspace pkernel services are situated
on the same CPU, this configuration can capitalize on the
last-level cache (LLC) to expedite IPC (i.e., cache-to-cache
transfers that typically require only tens of CPU cycles [55]).

Moreover, LITESHIELD provides a POSIX-compatible li-
brary that combines LD_PRELOAD and the binary translation
capabilities of the 1ibsyscall_intercept library [15]. The
LD_PRELOAD mechanism allows the library to be injected into
the address space of legacy applications at runtime, enabling
it to override standard library functions (i.e., glibc) and inter-
cept system calls. Meanwhile, 1ibsyscall_intercept pro-
vides fine-grained control over syscall interception by hooking
directly into the syscall execution path using inline hooking
and binary rewriting techniques. This combined approach
enables LITESHIELD to dynamically link the library to legacy
applications — without any modifications to the binaries — and
intercept delegable syscalls. The intercepted syscalls are redi-
rected to the IPC shared buffer, where LITESHIELD facilitates
communication with its ukernel services.

Like FlexSC [55], LITESHIELD aims to improve syscall
performance by rethinking the traditional syscall interface.
However, they take different architectural approaches. FlexSC
introduces exception-less system calls that batch syscall ex-
ecution and decouple it from the application thread, reduc-
ing kernel traps and improving throughput on multicore sys-
tems. In contrast, LITESHIELD decomposes traditional kernel
functionality into userspace pkernel services and uses fast
userspace IPC and selective syscall trapping (via ptrace) to
intercept and redirect syscalls, maintaining compatibility with
unmodified Linux and legacy applications.

3.3 Userspace uKernel Services

As illustrated in Figure 3, LITESHIELD’s ukernel services are
divided into two categories: core services and composable
services. Core services, such as IPC, syscall arbitration, time
management, and memory management, provide essential
ukernel functionality required by every guest application. In
contrast, composable services, including file, device, and net-
working management, are provided on demand. Integrating
existing and new userspace approaches into LITESHIELD as
composable ukernel services is straightforward.

We have integrated the DPDK-based userspace network
stack, f-stack [9], into LITESHIELD. First, we extended
LITESHIELD to fetch syscall requests from the IPC shared
buffer and enqueue them in a separate operation queue for
f-stack to process. Further modifications were made to
f-stack’s main network processing loop to monitor the
operation queue and handle any received network requests.
Once processed, the results are placed back into the IPC
shared buffer, where the guest application can retrieve them.
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Figure 4: Syscall latency comparisons.
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Figure 5: Network performance comparisons, on UDP and
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f-stack primarily processes packets in userspace, interact-
ing with the underlying network device only when necessary
(e.g., for sending packets) through a limited syscall interface
(e.g., read and write). Each instance of f-stack is bound to
a software tap device, enabling the sharing of a physical net-
work card across multiple containers. Last, -stack supports
direct use of a physical NIC for scenarios requiring dedicated
access. We have also implemented and integrated a userspace
filesystem, compatible with ext2 [22], into LITESHIELD.

Table 1: Ptrace overhead for non-delegable syscalls.

Syscall Syscall lat ~ Ptrace lat Ptrace
(us) (us) overhead

mmap 0.220 25.485 99.1%

fork 40.553 35.656 46.8%

clock_nanosleep 56.896 23.256 29.0%
futex 0.254 15.476 98.4%

4 Evaluation

We have implemented LITESHIELD in approximately 7,000
lines of C/C++ code . Currently, LITESHIELD supports the
redirection or arbitration of around 170 Linux kernel syscalls,
including 142 delegable and 28 non-delegable ones. Most of
the remaining unsupported syscalls (approximately 132) re-
quire root privileges from guest applications. LITESHIELD’s
modular design allows for the incremental addition of support
for these syscalls. The user-to-host interface in LITESHIELD
is thin, requiring only 22 syscalls — compared to 60+ VMEx-
its for KVM-based VMs and 250+ syscalls in the default
seccomp whitelist for containers. Please refer to Appendix
A for a more detailed breakdown. We have evaluated the

IProject website: https://github.com/kmanakkl/liteshield

effectiveness of LITESHIELD by comparing it with state-of-
the-art isolation mechanisms, including Docker containers [8],
KVM-based VMs [14], Firecracker [28], and gVisor [62].
Testbed. We conducted our experiments on a platform with an
Intel Xeon Gold 6430 CPU, 96GB DDRS5 RAM, and a Micron
7450 NVMe SSD (ext4), running Ubuntu 22.04 with Linux
kernel 5.15. Hyperthreading was disabled, and resources were
configured to avoid bottlenecks. KVM tests used 16 vCPUs,
32GB RAM, and a virtio disk in direct sync cache mode with
the same OS as the host. gVisor [62] (v1.10.1) was tested
in systrap mode with Docker support, while Firecracker [28]
(v1.10.1) was tested with an Ubuntu 24.04 root filesystem
on Linux kernel 5.10, configured with 16 vCPUs and 32GB
RAM. Docker containers and LITESHIELD were constrained
to 16 cores and 32GB RAM using cgroup [16].

Syscall latency. We evaluated syscall performance using two
representative syscalls: a simple syscall, getpid, and a com-
plex syscall, read. Figure 4a shows the average latency of
invoking getpid one million times — LITESHIELD achieves
significantly lower latency than the user-level isolation mecha-
nism gVisor due to its fast IPC mechanism, while maintaining
comparable latency to other VM-based approaches for this
simple syscall. Figure 4b illustrates the average time to read 1
byte from each block of a 4GB file. For this complex syscall,
LITESHIELD outperforms VM-based approaches, as read
triggers VMEXxits in VMs, incurring high context-switch over-
head. Further, LITESHIELD surpasses native performance due
to its specialized, lightweight userspace filesystem.

Ptrace overhead. We evaluated the performance impact of
LITESHIELD’s ptrace-based arbitration mechanism for non-
delegable syscalls. As shown in Table ??, we selected one
representative syscall from each of the four main classes of
non-delegable syscalls: process management, memory man-
agement, timing, and locking. On average, pt race introduces
15-35us of overhead, with the effect being more pronounced
for lightweight syscalls (e.g., mmap and futex) and less sig-
nificant for heavier ones (e.g., fork and clock). We note that
these syscalls are generally invoked infrequently. In future
work (§5), we plan to convert these non-delegable syscalls
into delegable ones to eliminate this overhead.

Userspace networking. We evaluated the performance
of LITESHIELD’s userspace network stack, ported from
f-stack. Figure 5a illustrates UDP network performance
(packets/second) with a client sending UDP packets of various
sizes to a server hosted under different isolation approaches.
We used a pair of connected virtual interfaces (i.e., veth) to
connect the virtual NICs of the client and server. LITESHIELD
outperforms all other isolation mechanisms, with performance
slightly below native, due to the highly optimized userspace
network stack provided by f-stack. Figure 5b shows TCP
performance using iperf [11], with one instance as the client
and another as the server hosted under those same isolation
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Figure 6: Performance for writing a 4GB file with various threads and block sizes.

approaches. While LITESHIELD delivers comparable perfor-
mance for small packets, it falls behind the microVM ap-
proach (e.g., Firecracker) for larger packets because f-stack
lacks the GRO feature. GRO reduces packet processing overhead
for large packets by merging multiple small packets before
processing, but it may introduce latency for small packets,
highlighting the lack of a “one-size-fits-all” solution. With
LITESHIELD, however, guest applications can select ukernel
services tailored to their specific requirements.
Userspace filesystem. We evaluated the performance of
LITESHIELD ’s userspace filesystem, developed from scratch
to emulate the functionality of an in-kernel ext 2 filesystem.
Using fio [29] (version 3.28), we conducted two types of
write I/O tests: 1) cached I/O, where data is written to the page
cache and asynchronously flushed to disk, and 2) direct I/O
(with O_DIRECT), which bypasses the page cache and reaches
the disk directly. The f£io benchmarks were run with multiple
threads accessing a single 4GB file using various block sizes.
For VM-based approaches (e.g., gVisor and Firecracker),
direct I/O (O_DIRECT) bypasses the VM’s page cache but
can still be buffered by the host’s page cache, causing dou-
ble caching and hindering direct persistence to disk. In con-
trast, with userspace isolation, LITESHIELD completely elim-
inates double caching. As shown in Figure 6a, LITESHIELD
achieves higher write performance than KVM (we explicitly
configured QEMU to enforce direct writes for its disk) and
native setups for smaller block sizes, with slightly lower per-
formance for very large block sizes (e.g., IMB). For cached
I/0O, Figure 6b shows that LITESHIELD demonstrates better
scalability than other approaches as the thread number in-
creases. This is because LITESHIELD’s userspace filesystem
has a greatly simplified and efficient page cache mechanism.
Real-world applications. We evaluated the performance of a
real-world application, Redis [19] v6.0.16, on LITESHIELD
(with both networking and filesystem pkernel services) us-
ing YCSB v0.18.0 [33] by executing four distinct work-
loads: Workloads A (50% reads, 50% updates), B (95% reads,
5% updates), C (95% reads, 5% inserts), and D (50% reads,
50% read-modify-write). Figure 7 shows that LITESHIELD
achieves higher performance compared to native execution.
This improvement is primarily due to the reduced overhead
of IPC versus traditional syscalls, particularly for complex
operations. In contrast, this overhead in alternative isolation
solutions, such as Firecracker and gVisor, is more pronounced,

(b) Cached IO.
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Figure 7: YCSB [33] performance on Re-
dis [19] with different workloads.

resulting in inferior performance.

5 Conclusions and Future Work

We present LITESHIELD, an effort to explore to what ex-
tent guest applications can be isolated in userspace without
requiring kernel or application modifications. LITESHIELD
achieves this by decoupling guest applications from their
guest kernels and offering guest kernel services as a collec-
tion of userspace pkernel services. It ensures strong isolation
through a thin user-to-host interface and delivers high perfor-
mance with specialized userspace ukernel services.

Despite its effectiveness, LITESHIELD has several limita-
tions that suggest directions for future work. First, the pt race-
based arbitration mechanism introduces overhead for non-
delegable system calls. While we consider this a reasonable
trade-off to achieve performance, compatibility, and isolation,
future kernel support could eliminate this overhead by con-
verting non-delegable syscalls into delegable ones. Rather
than modifying the host kernel to introduce new context-
aware variants of these syscalls, we are exploring a more
transparent solution: leveraging a kernel module to detect
whether non-delegable syscalls originate from LITESHIELD’s
ukernel services. When such calls are identified, they could
be dynamically converted into context-aware syscalls. Fur-
thermore, statically linked applications, including those with
custom libc implementations or inline assembly system call
instructions, may bypass LITESHIELD’s interception library,
resulting in failures due to seccomp blocking. To address
this issue, we are exploring a “hotpatching” technique that
disassembles system call instructions in statically linked pro-
cesses and replaces them with hooks that redirect the calls to
LITESHIELD’s IPC mechanisms.
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Appendix A

Table 2: System call classification.

User-host interface Delegable Non-delegable Blocked Blocked (root privilege)
(supported) (supported) (supported) (not supported) (not supported)
timerfd_create read mmap msgget sched_getaffinity
timerfd_settime write munmap msgsnd mincore
dup open mremap msgrev pause
poll close brk msgctl vfork
ioctl stat mprotect gettimeofday times
read fstat madvise setsid rt_sigpending
write Istat rt_sigprocmask getsid rt_sigtimedwait
pread64 poll rt_sigsuspend capget rt_sigqueueinfo
msync Iseek rt_sigreturn capset sigaltstack
brk ioctl rt_sigaction acct utime
futex pread64 prlimit64 setdomainname uselib
clock_nanosleep pwrite64 pretl iopl personality
tgkill writev clock_nanosleep ioperm sysfs
epoll_create pipe set_robust_list io_setup getpriority
epoll_ctl dup rseq io_destroy setpriority
epoll_wait dup2 fork io_getevents sched_setparam
readv getpid clone3 io_submit sched_getparam
writev sendfile execve io_cancel sched_setscheduler
wait4 socket exit_group get_thread_area sched_getscheduler
listen connect wait4 lookup_dcookie sched_get_priority_max
fentl accept futex remap_file_pages sched_get_priority_min
rt_sigreturn sendto tgkill semtimedop sched_rr_get_interval
recvirom msync settimeofday mlock
sendmsg arch_prctl fanotify_init munlock
recvmsg alarm fanotify_mark mlockall
shutdown exit shmget munlockall
bind setitimer shmat vhangup
listen getitimer shmctl modify_ldt
getsockname getrandom pivot_root
getpeername semget sysctl
socketpair semop adjtimex
setsockopt semctl setrlimit
getsockopt shmdt chroot
uname getrlimit mount
fentl getrusage umount?2
flock swapon
fsync swapoff
fdatasync reboot
ftruncate create_module
getcwd init_module
chdir delete_module
rename get_kernel_syms
mkdir query_module
rmdir quotactl

Continued on next page...
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User-host interface Delegable Non-delegable Implementable Blocked
unlink nfsservctl
getppid getpmsg
epoll_create putpmsg
getdents64 afs_syscall
fadvise64 tuxcall
epoll_wait security
epoll_ctl readahead
openat time
newfstatat sched_setaffinity
unlinkat epoll_ctl_old
pselect6 epoll_wait_old

sync_file_range
timerfd_create
fallocate
timerfd_settime
timerfd_gettime
accept4
eventfd2
epoll_createl
pipe2
statx
access
gettid
getdents
fchdir
creat
link
symlink
readlink
chmod
fchmod
chown
fchown
Ichown
umask
getuid
getgid
setuid
setgid
geteuid
getegid
setpgid
getpgrp
truncate
setreuid
setregid
getgroups
setgroups
setresuid

restart_syscall
clock_getres
utimes
vserver
mbind
set_mempolicy
get_mempolicy
mq_open
mq_unlink
mq_timedsend
mgq_timedreceive
mq_notify
mq_getsetattr
kexec_load
waitid
add_key
request_key
keyctl
ioprio_set
ioprio_get
inotify_init
inotify_add_watch
inotify_rm_watch
migrate_pages
unshare
get_robust_list
splice
tee
sync_file_range
vmsplice
move_pages
utimensat
inotify_initl
rt_tgsigqueueinfo
perf_event_open
name_to_handle_at
open_by_handle_at
clock_adjtime

Continued on next page...

DISTRIBUTION STATEMENT A. Approved for public release: Distribution unlimited. Case Number AFRL-2025-0650. Dated 06 Feb 2025.

984 2025 USENIX Annual Technical Conference

USENIX Association



User-host interface Delegable Non-delegable Implementable Blocked
getresuid syncfs
setresgid setns
getresgid getcpu

getpgid process_vm_readv
setfsuid process_vm_writev
setfsgid kemp
ustat finit_module
statfs sched_setattr
fstatfs sched_getattr
sync memfd_create
sethostname kexec_file load
mkdirat bpf
mknodat userfaultfd
fchownat membarrier
futimesat mlock2
renameat pkey_mprotect
linkat pkey_alloc
symlinkat pkey_free
readlinkat io_pgetevents
fchmodat seccomp
faccessat sched_yield
ppoll nanosleep
epoll_pwait ptrace
dup3 tkill
preadv syslog
pwritev set_tid_address
recvmmsg set_thread_area
sendmmsg execveat
renameat2 kill

copy_file_range

clock_settime

preadv2 clock_gettime
pwritev2 timer_create
sysinfo timer_settime
select timer_gettime
mknod timer_getoverrun
readv timer_delete
setxattr signalfd
Isetxattr eventfd
fsetxattr signalfd4
getxattr
lgetxattr
fgetxattr
listxattr
Ilistxattr
flistxattr
removexattr
Iremovexattr
fremovexattr
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