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Abstract

Tiered Memory is critical to manage heterogeneous memory
devices, such as Persistent Memory or CXL Memory. Ex-
isting works make difficult trade-offs between optimal data
placement and costly data movement. With the advent of In-
tel Data Streaming Accelerator (DSA), a CPU-free hardware
to move data between memory regions, data movement can
be up to 4x faster than a single CPU core. However, the
fine memory movement granularity in Linux kernel under-
mines the potential performance improvement. To this end,
we have developed DSA-2LM, a new tiered memory system
that adaptively integrates DSA into page migration. The pro-
posed framework integrates fast memory migration workflow
and adaptable concurrent data paths with well-tuned DSA
configurations. Experimental results show that, compared to
three representative tiered memory works: MEMTIS, TPP
and NOMAD, DSA-2LM can achieve 20%, 30% and 16%
performance improvement under real-world applications.

1 Introduction

Data-intensive applications such as data processing, machine
learning and graph processing are experiencing rising memory
demands. It couples with the increasing cost of DRAM and
limited DRAM capacity have made memory a major expense.
Non-DRAM memory devices, such as Compute Express Link
(CXL) [33,40,50]/Non-volatile Memory (NVM) [37], appear
as a larger memory tier with a low per GB price. However,
these technologies expose higher latencies than main memory,
potentially degrading performance if data is sub-optimally
placed in memory hierarchy.

To place hot/cold data in the correct fast/slow tier, the ar-
chitecture of tiered memory involves three primary stages:
detecting hot data, selecting data to be migrated, and exe-
cuting the data migration. NOMAD [44] presents that a sig-
nificant amount of time is consumed by page copying dur-
ing the memory migration process. Despite the implemen-
tation of MEMTIS [29], which effectively mitigates page
copying using histogram algorithm [29], the measured mi-
gration time spent on copying remains around 49%. One
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solution is to enhance the accuracy of the data hotness detec-
tion. Nonetheless, achieving high precision is associated with
substantial CPU overhead. Even when tasks are offloaded
to hardware solutions such as processor event-based sam-
pling (Intel PEBS [48]), the performance degradation is still
recorded at 20% [44]. This is attributed to the increased fre-
quency of migration, which consumes CPU resources (11%
CPU overhead in Graph500 [34]) and occupies additional
bandwidth, interfering with applications, negatively impact-
ing overall end-to-end performance.

A promising way to reduce CPU bottleneck is to offload
overhead to hardware accelerators such as the Intel Data
Streaming Accelerator (DSA). DSA can transfer data be-
tween memory regions without involving CPU and now ships
as a standard feature in 4/5th generation Intel Xeon proces-
sors [24]. Its benefits are twofold. First, each page-copy re-
quest requires submitting only a small descriptor to work
queue (WQ), which takes only a few cycles to complete [10].
This eliminates most of the CPU overhead, even in systems
that rely on CXL and CPU interactions. Second, DSA pro-
vides a bandwidth of about 32 GB/s per device, comparable
to four CPU cores [19]. Modern servers typically include four
DSA devices per socket, delivering a combined bandwidth of
up to 110 GB/s. Hence, DSA is well-suited for tiered memory.

However, using DSA effectively requires careful design.
First, current kernel support for DSA relies on the traditional
Direct Memory Access (DMA) interface, introducing large
overhead for buffer preparation and (un)mapping. It is inad-
equate for fine-grained page movement. Second, DSA out-
performs CPU-based copying only when there is sufficient
concurrency to hide high invocation latency, so asynchronous
task partitioning and dispatching must be carefully planned
to maximize performance by utilizing the multiple cores pro-
vided by the CPU socket. Finally, DSA performance is sensi-
tive to many configurations and requires tuning. We address
this by developing an adaptive algorithm for different page
types, with dynamic batch sizes and WQ settings.

Based on DSA hardware, we design DSA-2LM (DSA-
based two-level memory), a new tiered memory system in
Linux kernel with flexible interfaces (§3.2). While inheriting
hotness detection and page migration logic via kmigrated of
MEMTIS [29], DSA-2LM introduces several DSA-specific
designs. These designs contain fast memory migrating work-
flow (§3.3) and adaptable concurrent data migration (§3.4)
with well-tuned batch size and number of WQs. It avoids
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CPU involvement in the critical data copying path, enabling
aggressive CPU-free migrations.

To evaluate the performance of DSA-2LM framework, we
choose five widely used applications and use traces of in-
dustry workloads. The evaluation environment is a commer-
cial pre-market CXL system. The DSA-based acceleration
of page copying allows the system to take full advantage
of page migration, thereby improving its responsiveness to
changes in memory access patterns. Experimental results
show that, compared to three representative page management
schemes: MEMTIS [29], TPP [33] and NOMAD [36], DSA-
2L.M achieves up to 81.7%, 52.9% and 15.6% performance
improvement under real-world applications. DSA-2LM is
available at https://github.com/madsys-dev/DSA-2LM.

2 Motivation and Challenges

2.1 Tiered Memory and Applications

The memory demand of data-intensive applications such
as graph processing and machine learning continues to in-
crease [28]. In Microsoft Azure, memory costs ~50% of the
total server costs [30]. ML models are rapidly growing, and
are expected to grow 50x in the next five years [33]. With
rapid data growth, memory hierarchy should be redesigned.

Tiered memory fulfills the requirements of data-intensive
applications. It uses a two-level hierarchy with a fast, ex-
pensive tier and a slow, cost-effective tier [15]. It frequently
accesses data in the fast tier, moves less-accessed data to slow
tier, and maintains an exclusive data placement. Emerging
memory technologies such as high bandwidth memory, CXL
memory [8,32,40,43,51], NVM [47], and NVMe SSDs intro-
duce solutions that challenge the traditional memory hierar-
chy. For example, CXL [8] integrates various memory devices
under a single interface, offering larger storage capacities and
narrowing the performance gap. It guided researchers to ex-
plore state-of-the-art systems like TPP [33], MEMTIS [29],
NOMAD [44], and Nimble [46], each designed to optimize
data access across different memory tiers.

2.2 Tiered Memory Top-down

Trade-off between CPU and hotness detection algorithm.
Both hardware-based and software-based access tracking in-
volve CPU usage [35, 39], a critical performance bottleneck
for tiered memory systems. There is no one-fit-all hotness
detection algorithm [45]. Achieving high precision and finer
monitoring granularity for detecting hot pages requires tiered
memory systems to either shorten the monitoring interval
or increase the number of counters, both of which demand
additional CPU resources.

Interference between migration and applications. To
adapt to dynamically changing workloads, tiered memory re-
quires to frequently migrate data between the fast and slow

tiers, leading to data copying overhead. The extra CPU uti-
lization for monitoring and migration will interfere with appli-
cation performance [23], thus a well-designed tiered memory
system may not be the best choice. As shown in Figure 1,
increasing the sampling interval results in higher CPU utiliza-
tion and more page migrations, which can degrade application
performance eventually.

Page copy is still a problem for tiered memory. One
of the critical challenges is the significant CPU overhead
associated with page migration and memory copying. This
issue has been explored in previous tiered memory works [27,
29,44]. Nimble reports 30% in the page migration phase. Our
empirical tests further highlight this challenge, particularly in
scenarios involving mixed workloads (e.g., co-location [17])
and hot start (e.g., serverless [31]). The core reason for this
overhead is the CPU’s involvement in memory copying, which
leads to CPU stalls. To address this, we explore solutions such
as offloading memory copy, which could alleviate the CPU’s
burden and improve system performance.

Figure 2 shows the function sampling results of kernel
migrating process captured by perf [2] on MEMTIS. The pro-
portion of migrating pages is 72.87%, while getting page info
from index (i.e., get_pginfo_idx, which involves kernel’s
reverse mapping mechanism and update page access statis-
tics) is 29.82% and memory copying (migrate_page_list)
is 34.43%. About 73.51% of processor cycles in migrating
pages are spent on copying pages.

Huge Pages are commonly found in tiered memory.
Transparent Huge Page (THP) is utilized to enhance per-
formance in applications [38], such as cloud [20] and
database [21]. Most tiered memory works enable THP, so
we measure the processing of TPP. Results show that Huge
Pages will be the majority if THP [3] is enabled. For PageR-
ank [22] workload, during the demotion, there are 1249067
4KB Pages and 8670 2MB Huge Pages. Thus Huge Pages
account for 78.0% memory.

2.3 Observations of DSA

DSA [24] in Intel 4/5th (Sapphire/Granite Rapids) Xeon
CPUs can enhance data copy and transformation. DSA hard-
ware comprises interfaces for host communication, work
queues (WQs) for descriptor storage, processing engines (PEs)
for task execution, and arbiters for quality of service [25].
DSA devices appear as single root complex integrated end-
points, compatible with PCle. Users submit 64B descriptors
via MMIO portals; these include operation details like opera-
tion type, address, and batching list. Descriptors are stored in
WQs, which can be either a dedicated WQ for single-client use
or a shared WQ for multiple clients without synchronization.

DSA’s address translation cache interacts with the IOMMU,
supporting coherent shared memory with CPU cores, eliminat-
ing the need for memory pinning. The software architecture in-
cludes the Intel Data Accelerator Driver (IDXD) [7] for DSA
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Figure 1: Analysis of hotness detection.

management [19]. Applications exploit libaccel-config
API to use DSA in user space, and IDXD allows WQ portal
address exposed to user space via mmap.

The performance of DSA is higher than CPU. While
copying data between local/remote NUMA nodes, a DSA can
attain a bandwidth of up to 32 GBps, whereas an individual
CPU core achieves a maximum bandwidth of only 9 GBps.
Moreover, the time required for data copying with a DSA
is consistently less than that of a CPU when the size of the
data exceeds 32 KB. Furthermore, memory copying increases
CPU utilization, leading to interference with ongoing tasks
due to significant contention for CPU resources [42].

Not all memory copy sizes benefit from DSA. Figure 3
shows that using DSA performs higher performance than CPU
copying when the transfer size is above 32 KB, where each
descriptor is submitted and completed before sending another.
The submitted descriptors are processed in a pipelined fash-
ion [25], so CPU copying is faster than DSA in small transfer
size (< 32 KB). As the transfer size increases, the submission
overhead of DSA can be disregarded, thereby showcasing its
performance advantage compared to CPU copying.

Number of WQs and batch size of DSA. Figure 4/5 shows
that the number of WQs significantly influences maximal
throughput. The number of WQs is positively correlated with
increased throughput. The throughput attains its maximum
when configured with four WQs. Users should carefully con-
sider transfer size, as it affects scalability differently.

The DSA-facilitated batching of descriptors serves to re-
duce the cost associated with offloading. As shown in Fig-
ure 0, the performance improvement plateaus as the batch
size reaches 8. Additionally, DSA enhances throughput in a
non-linear manner, and it depends on the transfer size.

2.4 DSA v.s., DMA

DMA and DSA operate at different abstraction levels. DMA
provides a general interface that various underlying engines,
such as DSA or Host Bridge can support, and these inter-
faces abstract memory operations, letting developers work
without dealing with complex hardware drivers [49]. Directly
manipulating DSA driver functions (i.e., IDXD) offers less
abstraction. However, this approach balances ease of use with
advanced functionality and performance. Utilizing DSA di-
rectly, without dependence on the DMA interface, presents
two principal advantages:

Figure 2: Profiling of migrate process.

Size (N x 4KB Pages)
Figure 3: DSA/Memcpy comparisons.

Elimination of memory pinning overhead. Most devices us-
ing DMA cannot tolerate page faults, requiring guest buffers
to be pinned in host memory and mapped in the IOMMU
page table before DMA access. Consequently, DMA becomes
problematic in tiered memory scenarios, a major limitation, es-
pecially when hosting multiple virtual machines. In contrast,
DSA supports the use of either physical or virtual addresses.
The use of virtual addresses that are shared with processes
running on the CPU is called shared virtual memory. There-
fore, address translation does not require IOMMU page table
mapping or memory pinning.

Significant performance improvement. In the submitting
descriptor phase, DSA shows better performance than DMA.
In DSA-2LM, the DSA descriptors are designed as per-cpu
variables, so there is no dynamic descriptor (de)allocation. In
contrast, using DMA interfaces should wait for the descriptor
to be ready. We measure single copy operation for one 4KB
page shown in Figure 7. DMA operation spends an extra 88ns
in total to (un)map DMA buffer, prepare memory copy and
submit DMA request. In contrast, only 6ns time is required to
submit DSA descriptor. The major expensive phase is waiting
for the completion of each DMA/DSA operation. According
to evaluations in Section 2.3, utilizing features such as DSA
batching and multi-channel DSA utilization further boost per-
formance compared to the previous generation DMA engines
such as Crystal Beach DMA (CBDMA) and Intel I/O Acceler-
ation Technology. DSA provides 2.1x greater throughput on
average and up to 8 x higher throughput than CBDMA [25].

2.5 Challenges and Design Principles

Above all, there are three primary challenges: (1) How to
directly use DSA in kernel-space for migrating pages and
cooperating with tiered memory system (2) How to let both
4KB Page and 2MB Huge Page enjoy the benefit of DSA, and
(3) How to dynamically choose appropriate batch size and
number of WQs for each descriptor to maximum performance
without harming application performance. Thus, we should
redesign the tiered memory system considering the features
of DSA from three aspects.

Use DSA directly for page migration in kernel space.
Utilizing the CPU for page migration will increase CPU foot-
print, thereby affecting the performance. Section 2.3 shows
that using DSA can alleviate CPU overhead and exhibit supe-
rior performance in page migration. For in-kernel program-
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ming, we bypass DMA interface and directly use physical
address in submitted descriptors. Our evaluation confirms that
using DSA in kernel space does not trigger any page fault.

Use asynchronous mode of DSA properly. Handling hard-
ware interrupts in user space can be tricky. Intel officially
recommends using UMONITOR/UMWAIT instructions after sub-
mitting descriptors to reduce power consumption of the CPU
core [11,25,49]. However, this approach does not achieve
true asynchronous mode, as the CPU cannot schedule other
tasks while in a low-power state. Intel DTO [1] adopts the
sched_yield syscall to proactively relinquish the CPU to
avoid busy polling, but this sacrifices some responsiveness.
Hence, such user-space programming models are not appli-
cable in kernel space. DSA-2LM must carefully design and
utilize the advantage of handling interrupts in kernel space,
achieving genuine and efficient asynchronous waiting.

Aggregate data path for both small/large size page mi-
gration. Section 2.3 presents that only large-sized page migra-
tion can benefit from DSA. Naive design is using two separate
data paths for page migration. For 4KB Pages, DSA-2LM
uses the original copy_page method. For 2MB HugePages,
DSA-2LM uses DSA-oriented copying functions. A separate
data path means extra overhead and small-sized pages cannot
benefit from DSA. We need a new data path with adaptable
algorithm to aggregate small and large pages.

Carefully tuning parameters for DSA. As we discuss in
Section 2.3, using different values of batch size and number of
WQs will significantly influence the copying rate. For a page
list to be migrated, we should tune the value of parameters to
maximize performance. So we need to know the performance
changes and adjust the parameters dynamically according to
the page number and each page size in the page list.

3 Design of DSA-2LM

3.1 Architecture Overall

DSA-2LM consists of three steps: track page access using
hardware performance counter, choose hotness pages, and
migrate pages in the background with DSA (Figure 8). (1)
DSA-21LM uses the page histogram mechanism, which is the
same as MEMTIS [29], to record the access of pages. It sam-
ples memory access in the page granularity using PEBS, and
updates the hotness distribution of all allocated pages peri-
odically. (2) DSA-2LM ensures that the size of the hot set is

Figure 6: The effects of batch
size.
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Figure 8: DSA-2LM overall.

maintained near the capacity of the fast tier, thereby enabling
the fast tier to accommodate all hot pages. It chooses hot/cold
pages according to its access count higher/lower than the
thresholds 7}, and T;,;;. These thresholds are dynamically
adjusted to fit into the total pages. Then selected hot/cold
pages are moved to promotion/demotion page list. (3) The
per-node kernel threads responsible for migration perform
the migration operation including demotion and promotion.
Such a kernel thread will be woken up periodically in a time
interval (e.g., 200 ms). DSA-2LM decides to migrate pages
according to the available space in the fast tier. It detects the
status of DSA, and it migrates the page list using available
DSA devices in the kernel space. DSA-2LLM uses an adapt-
able concurrent migration algorithm to copy page lists that
include 4KB Pages and 2MB Huge Pages.

Compared to MEMTIS, DSA-2LM inheriting its hotness
detection algorithm, page placement strategies and relying on
the kmigrated kernel thread for page migration. Additionally,
DSA-2LM improves MEMTIS’s sampling algorithm to con-
sistently utilize the most recent samples, thus avoiding using
outdated samples. Crucially, DSA-2LM introduces several
key improvements that are specific to DSA. Inspired by Nim-
ble [46], DSA-2LM introduces a concurrent page migration
strategy. DSA-2LM applies the DSA adaptive migration algo-
rithm to optimize page copying. Because DSA is CPU-free,
DSA-2LM shortens the wake-up interval of the kmigrated
thread, adopting a more aggressive migration strategy without
incurring extra overhead.

3.2 Implementation in Kernel

An extra moudle is implemented under the misc/exp direc-
tory, which exposes two new APIs: dsa_multi_copy_pages
and dsa_copy_page_lists. The functionality of DSA-2LM
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can be toggled via a sysAPI interface, and various statisti-
cal parameters are presented through procf's for monitoring
purposes. The state-of-the-art tiered memory systems like
MEMTIS [29] and TPP [33] are based on the 5.x kernel. To
ensure compatibility with existing systems, the overall imple-
mentation is based on Linux kernel version 5.13/5.15. The
modifications to the memory management subsystem and
DSA acceleration module implementation comprise approx-
imately 2K LoC, while the backporting of the IDXD and
IOMMU drivers from kernel 6.4 introduces around 8K LoC.

3.3 Migration Workflow

DSA-2LM creates a migration kernel thread for each mem-
ory tier to handle promotion and demotion operations in the
background. The system maintains two lists: a promotion
list containing hot pages for the slow tier and a demotion list
containing cold pages for the fast tier.

Whenever processing a memory access sample, DSA-2LM
compares the page’s hotness factor (H;) to the threshold Tj.
If the page is determined as hot, it is moved to the promotion
list. Also, the migration kernel thread periodically performs
cooling by halving a page’s access count for every N sampled
events. This process can cause some pages to transition to
cold states, in which case they are moved to the demotion list.

In the slow tier, the migration thread checks for hot pages
and determines if there is available space in the fast tier. If
both conditions are met, it promotes hot pages to the fast tier.
Conversely, when the available memory in the fast tier drops
below a predefined free-space threshold (set at 3% of the fast
tier’s total size for future page allocations and promotions),
the demotion operation is initiated.

This demotion process involves selecting victim pages from
the fast tier. Initially, cold pages (H; < T¢o1q) are demoted back
to the slow tier. It stops until sufficient free space is reclaimed.
Otherwise, cold pages are demoted until the necessary free
space is achieved. This strategy allows DSA-2LM to retain as
many cold pages as possible within the fast tier.

3.4 Adaptable Concurrent Migration

After promotion/demotion page list is prepared, the migration
thread uses DSA to copy pages containing mixed 4KB Pages
and 2MB Huge Pages.

Before migrating (see Algorithm 1), the total number of
available WQs must be initialized. 1imit_chans specifies the
total number of available DSAs used for page migration and
should be configured properly according to configurations
(typically a power-of-two value with DSA-2LM defaulting to
8). In DSA-2LM, each DSA device enables four PEs and one
WQ, so DSA device and WQ are one-to-one. DSA-2LM enu-
merates each WQ, updating the count of available WQs when
DSA-2LM is initialized first or 1imit_chans/dsa_state are
updated through sysfs APL

migrate_page_list (XX

4KB |—>| 2MB |—)| 4KB

4KB |—P| 2MB |

WQs

[ ][ e L o]

Multi-WQ

® -
e Batch List

WOST- | 2568 |--of 250k8 |>f axm |- sk |

Figure 9: Workflow of adaptable page migration.

Algorithm 1 DSA Migrate Page List

Input: page_list: 4KB and 2MB mixed page pair lists to be migrated (A
page pair include source/destination page)
1: get idxd_desc/dsa_hw_desc/dsa_completion_record/completion
pointers from per-cpu struct variables

2: repeat
3: nr_base_pages < 0
4: for each unsolved page_pair in page_list do
S: if page_pair is THP/HugePage then
6: transfer_size < 2MB / limit_chans
7 for each available WQ i do
8: Prepare a memmove DSA descriptor for (page_pair,
transfer_size, WQ i)
9: Submit a DSA descriptor
10: else
11: nr_base_pages < nr_base_pages + 1
12: batch_size < nr_base_pages / 1limit_chans

13: batch_list +— &
14: for each unsolved 4KB page_pair in page_list do

15: Prepare a memmove DSA descriptor desc for page_pair

16: batch_list < batch_list Udesc

17: if number of batch_list fits batch_size then

18: Choose a WQ ¢ in round robin

19: Prepare a batch DSA descriptor for (batch_list, batch_size,
WQ1);

20: Submit a DSA descriptor

21: batch_list + &

22: for each available WQ i do

23: Yield and wait for WQ i completion

24: until each page pair in page_list has been migrated

Aggregate data path. When the page order is greater than
3 (i.e., 32 KB), utilizing DSA for copying pages achieves
lower latency compared to using the CPU. For non-contiguous
pages, we employ batch processing to reduce additional over-
head. In case of contiguous pages, such as 2MB Huge Pages,
we leverage multi-WQ parallel copying to enhance efficiency.

Combining these strategies altogether, Figure 8 and Al-
gorithm | show the workflow of handling the promo-
tion/demotion page list. In the first pass, DSA-2LM picks the
2MB Page and splits it into 1imit_chans (e.g., 8) subpages
whose size is 2MB / 1imit_chans (e.g., 256 KB), and assigns
subpages to each WQ in round robin. In the second pass, DSA-
2LM calculates the average transfer size (i.e., batch_size)
for each WQ based on the remaining 4KB Pages, and dis-
tributes them into batch lists in each WQ. According to the
“shortboard effect””, DSA-2LLM balances the total transfer size
submitted to each WQ so that the difference among WQs does
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not exceed the size of a single 4KB page. If the batch_size
is less than two in a corner case, DSA-2LLM directly submits
the remaining 4KB pages to each WQ.

Concurrent migration with both batch and multi-WQ.
According to 1limit_chans of batch lists, DSA-2LLM ini-
tializes the necessary DSA data structures for process-
ing memory copy, including idxd_desc, dsa_hw_desc, and
dsa_completion_record. These data structures are created
as per-cpu global variables in the initialization phase, to avoid
the preparation overhead that exists in DMA processing.

Subsequently, for each WQ, DSA-2LLM submits DSA de-
scriptors, ensuring any errors encountered are handled ap-
propriately. Since adopting asynchronous mode, DSA-2LM
leverages the Linux kernel’s completion mechanism to
await completion of copy requests. Once the status field
in the dsa_completion_record is set by hardware, it trig-
gers an MSI-X interrupt that awakens the idxd_wq_thread,
which then scans all pending DSA descriptors. For each com-
pleted descriptor, idxd_wqg_thread invokes the correspond-
ing callback function, thereby signaling the completion.
Consequently, the migration thread is unblocked from
wait_for_completion_timeout and proceeds with the sub-
sequent operations. DSA-2LM sets a timeout for each sub-
mitted descriptor, and returns fails if it occurs. This workflow
significantly enhances the efficiency and speed of page copy-
ing operations in the kernel.

4 Evaluations

4.1 Evaluation Configurations

Hardware configuration. Our testbed is a dual-socket server
equipped with 4th Gen Xeon Platinum CPU (48 %2 physi-
cal cores), where each socket has 1 TB (256 GB x4) DDRS5S
DRAM. One of the sockets is connected to a 64 GB ASIC-
based Montage Technology CXL device. We disabled Intel
Hyper-Threading and fixed the CPU frequency to 3.2 GHz.
We set CPU affinity for workloads and used only 32 cores of
one socket. Similar to prior works, we used a DRAM NUMA
node (load/store: 112 ns) and a CPU-less node with CXL
memory (load/store: ~300 ns), and THP [16] is enabled. DSA-
2L.M can also support two NUMA nodes without CXL. We
configured the CXL-attached memory to system-ram mode.
It allows load/store access to CXL memory in kernel space.
Software configuration. We use different methods to eq-
uitably constrain the fast tier. For AutoNUMA, TPP and NO-
MAD, we changed the kernel boot argument (memmap GRUB
option [5]) to limit the fast tier size. The fast tier size is set
as 16/32 GB. For MEMTIS, we used a memory cgroup inter-
face to control the size of the fast tier. The ratios of fast/slow
tier memory size were established from 1:2 to 1:16. The pro-
portion of the fast tier size was adjusted from 33% (1/3) to
5.9% (1/17) of the resident set size (RSS) for each benchmark.

Workload RSS
Graph500 68.0 GB

Description

Graph generation and breadth-first search of
some random vertices [18].

Compute the PageRank score with an iterative
method [18]. (Twitter dataset [26])

XSBench 63.4 GB Monte Carlo neutron transport algorithm [41].
BTree 38.3GB In-memory index lookup benchmark [4].
Pandas 20.2~92.6 GB Data processing with six different queries [12].

PageRank 12.3 GB

Table 1: Workload characteristics.
4.2 Performance of Copy Pages

Two distinct workloads A/B, are employed to assess the im-
pacts of our adaptable copying algorithm. Workload A com-
prises 1023 4KB pages and a single 2MB huge page, with the
smaller 4KB pages constituting the bulk of the workload. Con-
versely, workload B is characterized by a high page intensity,
consisting of 1000 4KB pages and 24 2MB huge pages.

As shown in Figure 10, we measure the bandwidth of con-
tinuous page migration with three strategy: 1) CPU: only
use CPU to copy pages; 2) DSA (raw): migrating 4KB page
with CPU and 2MB page with DSA; and 3) DSA (opt): use
adaptable concurrent migration proposed in Section 3.4. For
workload B, the bandwidth of DSA-2LM (106.3 GBps) is
14.38/2.19x higher than CPU/DSA (raw) implementations.
We conclude DSA-2LM can easily saturate the bandwidth (the
peak bandwidth in our evaluation platform is ~110 GBps).

4.3 Performance Breakdown

We repeat to capture the result of function samples in kernel
mode by perf and Figure 11 shows the results. The overall
proportion of migrating pages in is dropped from 39.0% to
4.24%, which is only 2.51% compared with the original over-
head. This proves that our approach can effectively reduce
CPU overhead in the migration data path.

Figure 12 shows copying duration in real-time during the
execution of Graph500. The application completes in 142s,
with a total copying time of 14.9s when employing CPU-
based migration. Conversely, using DSA-based methods DSA-
2LM for page migration reduces the total copying time to
1.39s, representing only 9.3% of the baseline duration. In the
results reported in DSA-2LM, the copying time accounts for
only 0.97% of the execution time, whereas it comprises 10.5%
in the context of original tiered memory.

4.4 Real-world Applications
We evaluate five representative workloads in Table 1. Since
MEMTIS and TPP limit fast-tier memory size in different
ways, it is difficult to reserve the same fast-tier memory size.
For a fair comparison, we presented them in separate figures.
The upper part of Figure 13 compares DSA-2LM with
TPP, NOMAD, and AutoNUMA. We successfully applied
DSA to other state-of-the-art tiered memory systems using
similar approaches, denoted as TPP+, NOMAD-+, and Au-
toNUMA+ in Figure 13. We set the fast tier as 16/32 GB.
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Note that PageRank’s RSS is less than 16 GB, so it is ex-
cluded from this comparison. For TPP, Graph500 and XS-
Bench show performance improvements of 14.5%/11.5% and
29.8%/53.9% respectively for the 32/16 GB configuration.
For NOMAD, the baseline already outperforms TPP in the
majority of cases across four workloads. When DSA is inte-
grated with NOMAD, two-thirds of the cases show 4%~16%
performance improvements. This enhancement is attributed
to the increased page migration efficiency, which effectively
reduces the migration window and consequently decreases
the probability of transactional migration failures. For Auto-
NUMA, since it employs a more conservative page placement
strategy, DSA integration generally yields minimal perfor-
mance changes. In Pandas, AutoNUMA+ achieves perfor-
mance improvements of 2.0% and 12.1% for the 32 GB and
16 GB configurations, respectively.

The bottom part of Figure 13 compares DSA-2LLM against
MEMTIS. When the ratio of fast/slow tier is 1:2, DSA-
2LM outperforms MEMTIS in all evaluated benchmarks by
2.5~12.0% for five applications. When increasing the ratio
to 1:16, the performance enhancement averages 28% across
all benchmarks. In the best case, DSA-2LLM achieves a 1.8 x
speedup compared to MEMTIS. This significant improvement
occurs because the fast tier memory can only accommodate

Figure 11: The perf breakdown in DSA-

Running Time (S)

Figure 12: CDF of copying time.

a small subset of hot pages, causing the hottest page set to
change rapidly. DSA-based fast page migration enables better
adaptation to these dynamic access pattern changes.

We measure Graph500/Pandas as represented applications
for further case analysis (Figure 14). When the ratio is 1:1, the
performance increase is insignificant. When the ratio is 1:8,
the completion time can decrease by 20.68% in Graph500.
The effects of DSA will be better with the ratio increasing.

5 Related Works

Compatibility with other tiered memory systems. No-
mad [44] employs Transactional Page Migration (TPM), aban-
doning the page copy if the page is modified during migration.
Since DSA can speed up page migration by 5~10x, which
significantly reduces the migration window and consequently
decreases the probability of TPM failures. In the case of Col-
loid [42], the key insight is balancing access latencies across
different memory tiers. Then it determines the direction of
page migration based on global access latency. In this context,
page migration is still necessary, and our work is orthogonal
to Colloid. Additionally, recent works like NeoMem [52] have
been able to offload the page placement strategy to hardware
as well. It would be interesting to integrate DSA-2LM with
NeoMem to achieve a fully CPU-free solution.

Intel accelerator use cases. Recent research has demon-
strated the effectiveness of Intel accelerators in optimizing
storage, networking, and virtualization. For instance, Ano-
lisOS leverages “Memory Fill” capability to pre-zero memory
pages, reducing VM startup latency in large-memory configu-
rations by offloading page-zeroing from CPUs to DSA [6,9].
The Intel IAA plugin for RocksDB provides accelerated com-
pression/decompression in RocksDB [14]. For storage and
networking, DSA accelerates CRC/DIF generation and mem-
ory comparison through specialized hardware pipelines while
maintaining data integrity [13,19]. DSA-2LM is the first work
to utilize DSA in tiered memory.

6 Conclusion

This paper introduces DSA-2LM, an efficient tiered memory
system using DSA. It exploits the hardware capabilities of
DSA to design an aggregation algorithm for adaptable data
paths. DSA-2LM leverages batch/multi-WQ approaches for
concurrent migration. Results on the real CXL platform show
that applications benefit significantly from DSA.
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