BAOVERLAY: A Block-Accessible Overlay File System
for Fast and Efficient Container Storage

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu
Binghamton University
{ysun59,jlei23,sshin,huilu}@binghamton.edu

ABSTRACT

Container storage commonly relies on overlay file systems
to interpose read-only container images upon backing file
systems. While being transparent to and compatible with
most existing backing file systems, the overlay file-system
approach imposes nontrivial I/O overhead to containerized
applications, especially for writes: To write a file originat-
ing from a read-only container image, the whole file will be
copied to a separate, writable storage layer, resulting in long
write latency and inefficient use of container storage. In this
paper, we present BAOVERLAY, a lightweight, block-accessible
overlay file system: Equipped with a new block-accessibility
attribute, BAOVERLAY not only exploits the benefit of us-
ing an asynchronous copy-on-write mechanism for fast file
updates but also enables a new file format for efficient use
of container storage space. We have developed a prototype
of BAOVERLAY upon Linux Ext4. Our evaluation with both
micro-benchmarks and real-world applications demonstrates
the effectiveness of BAOVERLAY with improved write perfor-
mance and on-demand container storage usage.

CCS CONCEPTS

« Information systems — Storage virtualization; « Soft-
ware and its engineering — File systems management.

KEYWORDS

Virtualization, Containers, Overlay File Systems

ACM Reference Format:

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu. 2020. BAOVERLAY: A
Block-Accessible Overlay File System for Fast and Efficient Con-
tainer Storage. In ACM Symposium on Cloud Computing (SoCC °20),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC 20, October 19-21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10...$15.00
https://doi.org/10.1145/3419111.3421291

October 19-21, 2020, Virtual Event, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3419111.3421291

1 INTRODUCTION

As an alternative to virtual machines (VM), containers [10, 24,
57] offer a much lightweight, operating system (OS) level vir-
tualization approach, leading to higher server consolidation
density and lower operational cost in cloud data centers [9].
Further, containers allow developers to easily pack and ship
an application as a self-sufficient container image, able to be
deployed and run virtually anywhere, making it extremely
portable in a standardized and repeatable manner [52].

A container image is compactly built with a series of read-
only layers (files and directories) — with each being a set
of deltas from the layer before it [14]. Latching a layered
container image onto backing file systems (e.g., Linux Ext3/4)
to make it serve as the (virtual) root file system of a container
instance needs additional effort: Container storage typically
repurposes an overlay approach [59], wherein a shim layer
(i.e., an overlay file system) sits upon backing file systems
to combine all layers of a container image and presents a
unified file-system view to the container instance.

While being transparent and compatible with most exist-
ing backing file systems, the overlay file-system approach,
yet another level of indirection, does impose nontrivial I/O
overhead. Most noticeably, a mechanism commonly used
in practical overlay file systems [15, 19, 42] — making the
read-only layers of container images immutable - is a simple
(yet costly) copy-on-write (CoW) operation: To write a file
in a read-only container image layer, a copy of the whole file
must be first made to a separate, per-instance writable layer.

Such a CoW mechanism makes practical sense, as an over-
lay file system, working upon backing file systems, simply
relies on their exposed file-level I/O interface and hence in-
tuitively works at a file granularity. However, the file-based
CoW mechanism negatively impacts the performance of con-
tainerized applications, as a write, even to a tiny portion of a
file, might trigger a long “read-and-then-write” I/O operation.
Our investigation demonstrates that due to the file-based
CoW, the performance (queries per second) of a containerized
MySQL database decreases by up to 50%; it also leads to slow
startup time — up to 28 seconds to start a containerized Mon-
goDB. This is precisely why the existing “best practice” of

https://doi.org/10.1145/3419111.3421291
https://doi.org/10.1145/3419111.3421291

SoCC 20, October 19-21, 2020, Virtual Event, USA

containers suggests storing read-write data outside read-only
container images (e.g., via volumes [16]). However, distin-
guishing types of file data and storing them separately incur
considerable management/configuration effort and greatly
impair containers’ portability.

To this end, we introduce BAOVERLAY, a lightweight, block-
accessible overlay file system for fast and efficient container
storage. The key idea of BAOVERLAY lies in providing fine-
grained accessibility — at the block level - to overlay files.
With block-accessibility, BAOVERLAY further enables a fast
CoW operation and efficient use of container storage space.

Specifically, to enable block-accessibility, BAOVERLAY log-
ically partitions an overlay file into a sequence of equally-
sized blocks. Thus, a CoW to an overlay file only involves
copying a number of blocks — where the write targets — rather
than the whole file. To further hide the read latency in a
slow, synchronous CoW operation, BAOVERLAY decomposes
it into two portions: a fast-and-synchronous write (putting
only the new updates into the writable layer) and a slow-
and-asynchronous read (copying necessary data from the
read-only layers). This division hides any latency of the read
in a CoW from containerized applications, which only wait
for the completion of the write. As a write is usually to local
memory (e.g., page cache), it is extremely fast. Additionally,
BAOVERLAY provides a new file format to compactly store a
sparse overlay file — allocation of storage space is delayed
until blocks of an overlay file are being updated - and ex-
plores various mapping mechanisms to strike a good balance
between performance and space efficiency.

We know of no other container storage techniques sup-
porting block-accessibility for fast I/O and efficient use of
storage space. BAOVERLAY materializes the above ideas by in-
terposing new features and functions upon a clearly-defined
file-system interface — the inode data structure in POSIX-
compatible file systems. It does not alter any semantic-level
activities of backing file systems and thus can be interposed
upon a variety of existing file systems. Our evaluation of
BAOVERLAY with Linux Ext4 as the backing file system using
micro-benchmarks and real-world applications shows that
BAOVERLAY significantly improves applications’ I/O perfor-
mance (e.g., 32x for a 1KB file, and 64x for a 4MB file), and
saves storage space (the file size grows only as needed).

Road map: Section 2 motivates the problem, followed by
related work (Section 3), detailed design (Section 4), imple-
mentation (Section 5), and empirical evaluation (Section 6).
Section 7 concludes the paper.

2 MOTIVATION
2.1 Container Storage

One driving factor for the popularity of containers lies in
portability — the ability to move an application from one host

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

Container A

A merged root file system i Interface of an overlay file system

filel file2 file3 file4
H Overlay file systern

Writabie upper layer

filel file3 - |

Read-only lower l_iglVCr—l

file2 copy-up for a write§ |

Read-only lower layer-n

file3 - filed |

Interface of a specific underlying file system

| Backing file systems (e.g., Linux Ext3/4) |

Figure 1: An overlay file system combines all layers of
a container image and presents a unified virtual file-
system view to a container instance.

environment to another, seamlessly. With containers, one
can build an application in the form of a container image
and execute it on any host supporting containers. Compared
to VMs, the portability provided by containers is much light-
weight, as a container image contains minimally what are
needed to run a containerized application - e.g., its binary
code, libraries, and storage data — without the need of in-
cluding a bulky OS kernel (e.g., VMs).

Container Image: A container image provides a repro-
ducible virtual file-system environment that a containerized
application runs within. As practically driven by Docker [24],
a container image is made up of a series of immutable read-
only layers, with each storing a hierarchy of files and directo-
ries. Being immutable, layers can be shared by an unlimited
number of images, resulting in saved storage space and fast
creation of new container images. For instance, one can cre-
ate a new container image of a web service application in
a Linux environment by creating a new layer that contains
the code and data of the web application and composing it
with an existing Ubuntu image (i.e., layers).

Overlay File System: To provision a container instance
from a specific container image, the layered image needs to
be mounted and served as the (virtual) root file system of
the container instance. In this way, a container instance can
execute with a different file system from the host’s (i.e., a
lightweight isolation in data storage). Container storage com-
monly leverages an overlay approach [15, 42, 59] to achieve
this, which interposes an overlay (or union!) file system
upon backing file systems. In general, an overlay file system
combines multiple sub-directories — stored on the same or

Note that, in container terminologies, overlay file system (overlayFS) some-
times refers to one implementation of union file systems. Yet, we use overlay
to generally refer to union file systems [55].

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

SoCC ’20, October 19-21, 2020, Virtual Event, USA

160007 @ Aurs cow B AUFS NonCOW 3 6.01'0 Nginx COW
[0 Overlay2 COW B Overlay2 NonCOW z Bl Nginx NonCOW
2 [Btrfs COW B Btrfs NonCOW [l MongoDB COW
12,0001 @ zFs cow B ZFS NonCOW _451 @ MongoDB NonCOW
g < | @ MySQLCOW
h= = £ | B MySQLNonCOW
& 8,000 < g 23.0 9
2 0 ® £ 3 S % -
g 7 5 N : Z
S 4,000 . 1.5 .
= Nl
o = =N =) =
%) © a2 X 8 w Q 0 o w R <+ <+
o §mﬂaz:§a gmﬂgﬁgﬁg °g a%e;@ e :5:;:: B2 agaﬁ@) af&.": 0 125 =
ZEEEEERZ Z2222222 222RR222 BRRRRR22 22222222 BRRERRRER 22222 BEEEERZ
(cleloleloNolololololololoNololololclololo Nololololololole) O00000 OO0O000
SEOE0RYR URYRYRYE SBCR0RE SRNRTRYR YBER0RSE SBCRYRSE CERENE CERERE
A 2] 2] »n %] 72} 1)
B2 EPRZ B2 es B2 Z B2 e EO S B2 e B2 S B2 a0 P2 NS B2 0 E00 S £20207 £§20237
nEaPe n Z2nTafe v ZunEafe v 2nEafe v Zunsafe v Z2unEafe »n Z % Snba 7 % Hmba
CESS § E<ESY £ R <ESS £ £ <ESS § L <ESY € E<ESY £ &4 £SO T 550
28 A N 26f @a N 268 @a N 288 a N 288 a N 28% A N 239 2 B8gTa
< g < 2} < g < g < g < 8 ZEgﬂ < Zzé‘) <
)) S S S S S S
1K 16K 64K 256K M aM 100M 1G

Figure 2: Completion time of an update to lower-layer files of different sizes under Figure 3: Startup time of

various container storage approaches (e.g., AUFS, Overlay2, Btrfs, and ZFS).

different backing file system(s) and organized in a particular
stacking order - into a single merged sub-directory: When
the name of an object (e.g., a file) exists in multiple sub-
directories, the one in the topmost sub-directory is visible.
An overlay file system can be straightforwardly applied
to mount a layered container image. As depicted in Figure 1,
during the creation of a container instance, a container stor-
age driver exposes its container image to an overlay file
system in a way that each image layer represents a read-
only sub-directory stacked in the same order as that in the
container image (referred to as lower layers). In addition, an
initially empty writable sub-directory is stacked at the top
(referred to as the upper layer). The overlay file system then
presents them as a single root file system to the container
instance. During runtime, for a read, the overlay file system
searches from the upper to the lower layers in sequence until
the target file is first found; the path information is then
cached to accelerate future accesses. For a write, if it is the
first time to a file in the lower, read-only layer, a costly copy-
up operation (i.e., copy-on-write) is performed to copy the
full file from the lower layer to the upper layer. All subse-
quent updates are then applied to the new copy of the file.
Therefore, all changes made to the container instance (e.g.,
writing new files, modifying existing files, and deleting files)
are confined within the upper, per-instance writable layer.

2.2 Overlay Overhead Illustration

To illustrate the overhead incurred in a multilayered overlay
architecture (in Figure 1), we first compare the I/O latency,
in terms of the completion time of a write I/O operation - to
lower-layer files of various sizes — issued by a containerized

containerized applications.

application. More specifically, we ran Docker container [24]
(version 19.03) on a Linux host machine (with kernel 5.3).
The container storage was layered upon the Linux Ext4 file
system backed by an NVMe SSD (Samsung 970 EVO). We
ran a simple containerized application that interacted with
the underlying container storage with a series of I/Os: It
opened a file (of various sizes), updated a tiny portion of the
file (i.e., one byte), and then closed the file. We considered
two types of updates: 1) copy-on-write (CoW) — the file was
stored in the lower layer and accessed for the first time by
the application and 2) non-CoW - the file resided in the
upper layer. We measured the total completion time of the
above three consecutive operations. We ran each case for
~100 times to take latency variations into account.

Write Latency: We investigated two state of the art over-
lay file systems — Overlay2 [15] and AUFS [19]. As plotted
in Figure 2, under the CoW case with Overlay2 (default in
Docker container), it takes 3,595 us to update a 1-KB lower-
layer file. The time increases to 11, 944 us for a 4-MB file.
Such update latency keeps growing as we further increase
the size of the file (not shown in the figure). It is simply be-
cause, before applying a write, the overlay file system copies
up the whole file from the lower, read-only layer to the upper,
writable layer; as the file size increases, it takes increased
time to complete the copy-up operation. We found that Over-
lay2 buries such a copy-up operation amidst file open — when
an application opens a lower-layer file for writing (i.e., spec-
ified in the flags parameter), Overlay2 directly copies the
file up, resulting in long blocking time during the file open —
even for a file that is never modified but “mistakenly” opened

SoCC 20, October 19-21, 2020, Virtual Event, USA

with a “write” flag. In contrast, under the non-CoW case, re-
gardless of file sizes, the completion time of an update is
constant (around 22 ps) — once a file resides in the upper
layer, the write operation of Overlay2 is fast and nearly the
same as the native (i.e., without containers). Figure 2 shows
the similar trend under AUFS - another overlay file-system
implementation — but with shorter I/O latency under CoW
and slightly higher I/O latency under non-CoW.

These results clearly demonstrate that, as a result of CoW,
an update to a read-only, lower-layer file causes the overlay
file system to take significant time for completion. In practice,
a container instance is provisioned from a container image;
its application suffers from the prolonged write latency for
updating any data originating from the container image.

Startup Time: The write latency can be more significant
as a container image contains larger files. For instance, to
start a containerized MongoDB database (a No-SQL database)
with a 40-GB data store committed in advance, it takes ~28
seconds until it can start serving any requests (i.e., startup
time). It is because, when the MongoDB database boots up,
it opens its data store — consisting of several large files —
with a write-mode flag. Indicated by such a flag, Overlay2
copies these large files from the lower to the upper layer,
leading to long startup time. Indeed, the startup time of
a containerized application can be prolonged by any files
opened in the write mode. Figure 3 shows that, while start-
ing, the web server (e.g., Nginx) and database servers (e.g.,
MongoDB and MySQL) open up a log file stored in the lower
layer. It takes roughly 120 ms extra startup time with a 100-
MB log file, compared with the non-CoW cases. The startup
time becomes much longer with a larger log file - e.g., more
than one second with a 1-GB log file. As reported in [41],
slow container initialization can severely hurt common-case
latency on emerging container-based cloud platforms. For
example, in serverless computing [3, 37], a monolithic appli-
cation is decomposed to multiple containerized serverless
tasks, where startup cost is amplified. In addition, it is also
space-inefficient to store the entire file in the upper layer,
even only a portion of the file is updated.

These observations precisely reflect why the current “best
practice” of containers suggests storing read-write data out-
side the container’s file system (e.g., using container volumes
or data containers) [16]. Unfortunately, it not only increases
management/configuration complexity (e.g., one has to deli-
cately distinguish read-write data from read-only data and
create a volume for each unique directory), but also remains
limiting as storing read-write data in a volume still needs to
pre-copy the data from the container image to the volume
directory. Further, though one is advised to use volumes,
read-write data still commonly exists in container images.
Over the analysis of 500,000 public container images [63],

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

44% are document files such as Microsoft office files, texts,
source code, scripts, etc., many of which are supposed to be
modified. It also reports a certain amount of database-related
files in container images indicating that Docker developers
run databases inside containers.

3 RELATED WORK

CoW-featured File Systems: The I/O overhead and space
inefficiency, resulted from the CoW mechanism of overlay
file systems, could be mitigated by CoW-featured file systems,
like Btrfs [46] and ZFS [43]. They perform CoW at the block
(rather than the file) granularity with CoW friendly data
structures — e.g., a B+ tree in Btrfs and a Merkle tree in ZFS.
Ideally, only the modified blocks (a portion of a file) need
to be copied to new locations, leading to increased CoW
performance and efficient storage usage. As illustrated in
Figure 2, the CoW-featured file systems do perform better
than overlay file systems in terms of CoW performance. For
example, Btrfs takes 165 us to complete an update to a 4-MB
file, while we observed that Overlay2 takes 11,944 pys.

Though bringing performance benefit to CoW-related op-
erations, the CoW-featured file-system approach, unfortu-
nately, turns out to be cumbersome in practice. First, it trades
performance of certain I/O operations for fast CoW - it would
be very expensive for random updates, as an update affects
many on-disk structures (e.g., in Btrfs, an entire path from
root to the updated leaf node needs to be changed [46]). Sec-
ond, it experiences high fragmentation due to fine-grained
CoW, where defragmentation is required and costly [27].
Last, CoW-featured file systems are still not prevalent due
to immaturity, instability, and others [45, 51], making it less
accessible and adoptable especially for systems with other
pre-installed file systems. As we will report in Section 6,
Btrfs generally performs worse than non-CoW-featured file
systems (e.g., Linux Ext4).

I/0 Stack Optimization: The I/O latency brought by the
virtualized I/O stacks has long been mitigated via both soft-
ware techniques (e.g., para-virtualization [8, 33, 54, 62]) and
hardware-assisted solutions (e.g., device passthrough [17, 39,
48]). Further, to avoid I/O delays caused by contention, many
I/0O scheduling [6, 21, 22, 26, 28, 29, 35, 56] and placement
approaches [5, 12, 13, 40, 44, 47, 50, 60] were also proposed.
For example, vTurbo [56] accelerated I/O processing by of-
floading I/O processing to a designated core, while Vanguard
[47] eliminated I/O performance interference with dedicated
I/O resources. These techniques mostly focus on I/O per-
formance improvement for VMs. In contrast, BAOVERLAY
mitigates the I/O performance overhead caused by an overlay
file system for containers.

File Systems Optimization: Many specialized file sys-
tems were designed to improve I/O performance as well,

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

Block Accessibility —
/ [o[ofo[o[0fo{ofo] Partial WIEY Block 2} J--.,
olololololololo write [» Block 2! -1--Block 3
In-memory N/A JAsyndhronous Block 4
\) Block 4 :
‘\\\Pitmap of filel OC copy-up Blookn
N/A filel
filel
BAOVERLAY Upper layer Lower layers
; (writable) (read-only)

A write to (a p(;nion) of block 2 t Interface (e.g., read, write) t

Container A Backing file systems |

Figure 4: BAOVERLAY logically partitions overlay files
into same-sized blocks to enable block-accessibility.

such as write-optimized file systems [2, 32, 34, 58], copy-
on-write based file systems [7, 31, 43, 53], and others [38,
61]. Particularly, BetrFS[25] reduced write amplification and
adopted buffer-level indexes for efficient look-up operations.
PCOW [53] optimized CoW with a pipelined CoW to de-
crease performance penalty to first write. The composite-file
file system [61] decoupled the one-to-one mapping between
files and metadata for better performance. BAOVERLAY, as an
overlay file system, builds upon existing backing file systems
and can benefit from their improvements.

4 DESIGN OF BAOVERLAY

We design and develop BAOVERLAY, a lightweight, block-
accessible overlay file system. First, BAOVERLAY introduces
fine-grained, block-level accessibility to overlay files by log-
ically partitioning an overlay file as a sequence of equally-
sized blocks, thus being able to be accessed at the block level
(Section 4.1). With the block accessibility, BAOVERLAY fur-
ther enables a non-blocking CoW mechanism, wherein only
updated blocks — instead of a full file — are asynchronously
copied up from the lower layer to the upper layer (Sec-
tion 4.2). Last, BAOVERLAY provides a new file format, B-
CoW, for compactly storing overlay files to save storage
space — allocation of storage space is delayed until blocks of
the overlay files are actually being updated (Section 4.3).

4.1 Enabling Block Accessibility

The overlay approach builds upon the clear definition of the
interface between the OS and file systems. In particular, in
POSIX-compatible file systems, the representation of a file
(or directory) is associated with an inode data structure. It
stores the information (metadata) of a file’s attributes (e.g.,
file ownership, access mode, and data location in disk) as
well as an operations vector — specifically defining several
operations (e.g., open, read, and write) that the OS can invoke
when an application accesses the file. An overlay file system
can interpose itself on a backing file system by creating an

SoCC ’20, October 19-21, 2020, Virtual Event, USA

overlay inode for each overlay file (visible in the merged
file-system view in Figure 1). The overlay inode contains
overlay specific metadata (e.g., layers), the operation vec-
tor of the overlay file system, and its associated file on the
backing file system - i.e., the inode of the file in the upper
or the lower layer(s). Note that, unlike an inode from the
backing file system, an overlay inode is a pure in-memory
data structure to be transparent to the backing file system —
no on-disk modifications are needed.

We use the open function in Overlay2 to demonstrate
such an interposition mechanism. When a containerized ap-
plication opens an overlay file, an open request is directed
through the virtual file system (i.e., a uniform interface be-
tween the OS kernel and a concrete file system) to Overlay2
by invoking Overlay2’s open function. Then, the open func-
tion of Overlay2 creates an overlay inode associated with
the overlay file (if not created yet) and populates it with
needed information. One main step is to figure out which
layer the associated underlying file resides, fetch the actual
file’s inode data (via the backing file system’s inode fetch
operation), and put it into one field of the overlay inode. In
the end, the Overlay2 open function invokes the backing
file system’s open function that takes the associated file’s
inode as an input to actually open the file. Similarly for read
and write functions, Overlay?2 injects its operations before
invoking the backing file system’s read/write functions.

As stated in Section 2.2, the costly CoW mechanism is
injected in the Overlay2 open function: If a lower-layer file
is opened with a write-mode flag, the whole file is copied
from the lower layer to the upper layer, notwithstanding
the fact that the file would not be updated at all. Intuitively,
this (in)efficiency issue can be mitigated by moving the CoW
operation to the overlay write operation — when the file
is actually updated, a copy-up is applied. However, it will
instead stall a write request — issued by the application — due
to possibly long copy-up latency.

Instead, we observe that CoW is ideally not needed, as long
as an overlay file system can keep track of the file update in-
formation - i.e., the offset and length of each write to overlay
files. With such information, the overlay file system knows
which portions of a file are updated and which portions are
intact. Hence, the overlay file system can directly write the
updated portion(s) (new data) to the upper layer without
copying lower-layer data, though additional logic is needed
for read/write operations to locate the correct portions. For
instance, a read could involve reading certain portions of an
overlay file from the upper layer and certain portions from
the lower layer, by referring to the file update information.
To achieve this, one simple way is to use a dynamic data
structure (e.g., a linked list or treed structure) to track the
file update information. However, as applications could issue

SoCC 20, October 19-21, 2020, Virtual Event, USA

massive, arbitrary-length writes, such a dynamic approach
might be very costly in practice.

Block Accessibility: To this end, BAOVERLAY favors a static
approach with a simple (and lightweight) data structure to
track the locations of the updated portions in an overlay file.
As depicted in Figure 4, BAOVERLAY logically partitions an
overlay file (as well as its associated upper-layer file and/or
lower-layer file) into a sequence of equally-sized blocks (e.g.,
4 KB)? and tracks the locations of each block of the latest
version using a bitmap (i.e., a new field added in the overlay
inode) - e.g., bit @ indicates a block remaining intact and in
the lower layer, while bit 1 indicates a block updated and
moved to the upper layer.

With this, block-accessibility is enabled by BAOVERLAY as
follows (as illustrated in Figure 4): To write a lower-layer file
for the first time — instead of conducting a full file copy-up —
BAOVERLAY creates a sketchy file in the writable, upper layer
with its size initially set to zero. This process is very fast,
as it only involves metadata (i.e., the sketchy file’s inode)
to be asynchronously written to the upper layer’s backing
file system. Meanwhile, a bitmap associated with the file’s
overlay inode is allocated (and initialized to zeros) with each
bit representing the location of one block. After this, the
original write — to a continuous file range (i.e., represented
by offset and length) — is converted to a sequence of block-
based small writes directly mapped to the blocks within the
file range being accessed.

There are two types of small writes: a full-block write (i.e.,
the length is aligned with the block size) and a partial-block
write (i.e., not aligned). Note that, after conversion, only the
first and the last small writes could be partial-block writes,
while the ones in between are full-block writes. For a full-
block access, the data is directly written to the sketchy file
(i.e., filling up or overwriting the whole block) — no copy-
up is needed. In contrast, for a partial-block write to an
intact block (i.e., updated for the first time), in addition to
writing the new data to the mapped portion of the block in
the sketchy file, BAOVERLAY needs to copy the remaining
portion(s) from the lower-layer file — a copy-up operation is
needed. The reason that BAOVERLAY still needs to conduct
CoW lies in that it uses a coarse-grained (and lightweight)
approach to track file update information. To mitigate this
overhead, BAOVERLAY provides an efficient asynchronous
CoW approach (in Section 4.2).

As plotted in Figure 4, after a block of the sketchy file has
been completely updated, its bit in the bitmap flips, indicating
the block moved to the upper layer. As the overlay file is
continually updated, its sketchy file is filled up with more
blocks. Gradually, all blocks in the sketchy file are filled up,

2 A padding might be applied to the last block to be block aligned.

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

filel filel
Block 0 Copy-after-Write Block 0
N/A . Block 1
TBlock 2 @Synchronous write 1iBlock 2
Block 3. @Asynchronous read | Block 3
Block 42le-..| Block 412}
N/A Block n
@) [
Upper layer @ §® ;[Lower layers
\|:| vy Queue for deferred
112! copy-up tasks
A write (to part of block 2, flill\ h .
of block 3 and part of block 4) BAOVERLAY

Figure 5: Copy-after-Write consists of two decoupled
parts: (1) a synchronous and fast write and (2) a de-
ferred and slow read.

at which time the sketchy file becomes a complete upper-
layer file. Before the sketchy file completes, for any read,
BAOVERLAY coverts it to a sequence of block-based small
reads (to mapped blocks). For each small read, BAOVERLAY
looks up the bitmap to locate and read the latest version of
the block — from the sketchy file or the lower-layer file.

To sum up, with block-accessibility, BAOVERLAY allows
updating an overlay file at the block granularity. The block-
granularity update prevents the overlay file system from
copying the entire file at an update. This design provides sev-
eral benefits: First, due to the small block size, a containerized
application does not experience a long stall. In addition, the
small block size allows useful blocks staying in memory (i.e,
page cache) — benefiting subsequent reads to the same blocks.
In contrast, a full file copy-up can easily fill the page cache
and evict needed data blocks. Finally, the block-granularity
update further allows the “copy” operation to be removed
from the critical path of a write (as presented shortly in
Section 4.2). As BAOVERLAY uses a bitmap to quickly and ef-
ficiently track the physical locations of blocks, it incurs little
overhead to read/write operations (as shown in Section 6).

4.2 Taking “C” out of “CoW”

As we have seen, a copy-up operation is still needed in
BAOVERLAY for a partial-block update. Recall that, the tradi-
tional CoW mechanism requires performing a blocking read
(i-e., copy) before a write. Unlike the write that can leverage
the page cache to buffer data and quickly return, the read
usually triggers a slow path — to fetch data from the slow
backing storage (e.g., HDD or SSD). Hence, a partial-block
update may still suffer from long I/O latency due to the slow
“copy” operation in the traditional CoW.

Copy-after-Write: To overcome this, BAOVERLAY intro-
duces a non-blocking CoW mechanism, called copy-after-
write (CaW). The key idea is that the “copy” operation can
be taken out of a synchronous CoW operation and deferred

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

to a later appropriate time. As presented in Figure 5, CaW
hides the slow read latency in a synchronous CoW operation
by decomposing it into two portions: a fast-and-synchronous
write — putting the updates (i.e., a portion of a block) into
the upper sketchy file; and a slow-and-asynchronous read —
fetching data from the backing file systems to the remaining
portion(s) of the block in the sketchy file. This division al-
lows BAOVERLAY to hide any latency of the read operation
from applications, which only wait for the completion of the
write (as such a write is usually to page cache, it is very fast).

The reasons that the two halves can be separated are: (1)
The data to be copied are always stored in the read-only
lower layer and do not need to be copied immediately; and
(2) the data blocks (to be copied later) can be easily identified
using the bitmap.

Handling Reads: Due to CaW, the content of an in-transit
block - its deferred copy has not yet been completed — may
spread in both the lower-layer file and the upper-layer sketchy
file. This does not impact future writes, as writes always tar-
get the upper sketchy file. However, this may impact future
reads: a read to an in-transit block needs to consult both the
lower and the upper layers to compose a complete block. To
capture this, a new state, in-transit, is added to the bitmap®
For reads to these in-transit blocks, it involves two steps: (1)
BAOvVERLAY completes the deferred copy operation imme-
diately — fetching data from the lower-layer file to fill up
the remaining portion(s) of the block in the sketchy file. (2)
Afterward, it reads the full block — which likely resides in
page cache due to step (1) — and returns.

BAOVERLAY appears to transfer the blocking time from
partial-block writes to future reads — the reads after writes
might be blocked due to the existence of in-transit blocks.
However, the amortized blocking time of BAOVERLAY is
much shorter than the conventional CoW approach because:
(1) As a read to a block for the first time needs to fetch data
from the backing file system anyway, the additional overhead
caused by BAOVERLAY is “filling up” (i.e., a write) the sketchy
file (part of the above step 1). Again, this additional write
can take advantage of page cache with little I/O latency; and
(2) the deferred copy operation of an in-transit block might
have sufficient time to complete before a future read arrives.
In addition, a significant number of writes (e.g., 80% [36]) are
not followed by any future reads to the same blocks at all.

4.3 Storing Overlay Files Efficiently

In BAOVERLAY, a sketchy file plays a crucial role in enabling
block-accessibility and CaW. A sketchy file is analogous to a
“jigsaw puzzle” — with writes to disparate portions of its as-
sociated lower-layer file, the sketchy file is being assembled

3BAOVERLAY needs at least two bits to represent the location and in-transit
status of a block.

SoCC ’20, October 19-21, 2020, Virtual Event, USA

T a7 [BCoW-formatted filel
- null
Cached 1-level [25 2 v Block Table
block table | 3=null | [[-.—] Block4 I Raw filel
Ao 41 [Block2 v Block 0
n - null Performance-optimized . Block 1
LBA - UBA
Ro0t BT, ..o oo Block 2
BTO- 1 - . 7Ho Block 3
BT1 - null B{)O\V’ 1 " Block Table|Root BT} -~ Block 4
BT2 - null :; 111131 -1 Block Table BT_()//“ I
B onull | 557344l { Blockd 4~ Blockn
Cached 2-level |-3=>null A “{ Block2 ¥
4 2
block table " =" Space-optimized
BAOVERLAY Upper layer Lower layers

Figure 6: The BCoW file format applies a multi-level
block table to store the mappings between the lower-
layer addresses and the upper-layer addresses.

and eventually becomes a complete upper-layer file. How-
ever, if the size of the associated lower-layer file is large, this
assembling process may take a long time to complete, and
the same large storage space is likely to be allocated upfront
for the sketch file.

Simply using a bitmap (Section 4.1) is hard to achieve a
space-efficiency goal, though a bitmap favors performance.
It is because, a bitmap provides an inherent one-to-one map-
ping (of logical blocks) between the lower-layer file and its
upper-layer sketchy file: A write access (for the first time)
to the n-th block of the lower-layer file results in a fill-up
of the n-th block of the sketchy file. Some file systems (e.g.,
Linux Ext3/4) support sparseness that efficiently use storage
space by only updating the metadata of empty blocks (e.g.,
adjusting file sizes) instead of actually allocating the “empty”
space. However, if the underlying file system (e.g., Windows
FAT) does not support sparseness, the sketchy file’s size is
determined by the farthest block access (i.e., with the largest
access offset). For example, if there is a write to the last block
of the lower-layer file, the sketchy file’s size will be the same
as the lower-layer file, regardless of the actual number of
blocks that are filled up — the sketchy file may contain a
lot of “empty” holes. Even for the file systems supporting
sparseness, filling up a sketchy file (with a lot of “holes”) can
have unexpected effects, such as disk-full or quota-exceeded
errors, as the file size information in the metadata, indicates
the total size including empty holes that do not take up any
storage space yet.

BCoW Format: To this end, BAOVERLAY provides a new
file format, BCoW, which stands for the BAOvVERLAY Copy-
on-Write format. With BCoW, BAOVERLAY enables sparse
(sketchy) files to efficiently use storage space — transpar-
ently to the underlying file systems. Inspired by a canonical
page-table based virtual memory system [20], BCoW uses a
(multi-level) block table to maintain the mappings between
the blocks in a lower-layer file and its counterparts in the

SoCC 20, October 19-21, 2020, Virtual Event, USA

upper-layer, BCoW-formatted file. Simply speaking, it stores
the mappings between the lower-layer block addresses (LBA)
and the upper-layer block addresses (UBA), as illustrated in
Figure 6. Note that, a mapping can be null, meaning that
the lower-layer block has not been written or copied up to
the upper layer. With BCoW, a write access (for the first
time) to the n-th block of the lower-layer file results in an
append operation, which simply writes the new block to the
end of the upper-layer sketchy file — thus the sketchy file
grows as distinct blocks are updated. The append operation
in BAOVERLAY is also conducted in a CaW manner (Sec-
tion 4.2). In the meantime, the corresponding LBA-to-UBA
mapping in the block table is updated. The block table takes
up a small portion of a BCoW file’s space (e.g., stored in the
first several blocks), and loaded to (and cached in) memory
when the overlay file is being accessed.

Like a page-table approach, the design of the block ta-

ble for BCoW needs to consider the space-time tradeoff: To
be performance efficient, a single-level block table storing
all LBA-to-UBA mappings is desired; for each read/write,
one look-up is sufficient. On the other hand, to be space-
efficient, a multi-level block table storing a portion of LBA-
to-UBA mappings — only for the blocks being accessed - is
desired; consequently, for each read/write, multiple look-ups
are needed. To strike a reasonable balance between perfor-
mance and storage space efficiency, BAOVERLAY explores
two specific designs:
Performance-optimized Design: In this case, BAOVER-
LAY maintains a single-level block table storing all LBA-to-
UBA mappings. However, if the block size is small, it might
result in a large block table. For example, given an overlay
file of 4 MB with the logical block size of 4 KB, it requires a
block table with 1,000 entries, and thus 4 KB storage space
(assume one entry takes up 32 bits). The block table size
grows up to 4 GB for a 4-TB file.

Instead of using a fixed block size across all files, BAOVER-
LAY assigns varying block sizes for overlay files of different
sizes. Specifically, BAOVERLAY keeps the single-level block
table’s size fixed (e.g., 4 KB with 1,000 entries), while ad-
justing the logical block size accordingly. For example, for a
4-MB overly file, the block size is set to 4 KB, while for a 4-GB
overlay file, the block size is set to 4 MB. This design makes
intuitive sense as for small overlay files, BAOVERLAY works
at a fine-grained granularity (with small block size), while
for large overlay files, BAOVERLAY works at a coarse-grained
granularity (with large block size). More importantly, as the
block table is small (e.g., 4 KB), BAOVERLAY is able to cache
the full table in memory - ideally, the performance using
a single-level block table is almost the same as that using
an in-memory bitmap, except that the block-table approach
involves a one-time disk access — fetching the block table
(part of a BCoW file) to memory.

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

Space-optimized Design: The performance-optimized de-
sign may unnecessarily grow a BCoW file faster, as a tiny
write (e.g., 1 byte) causes a whole block being copied up -
the larger the block size, the faster the BCoW file grows. To
further enable large files to be more space-efficient (i.e., using
a small block size like 4 KB), BAOVERLAY adopts a multi-level
block table. Similar to a multi-level page table, a multi-level
block table allows dynamically allocating a set of sub-block
tables with each covering a disparate region of a large file
- one region consists of a sequence of adjacent blocks. For
example, we can create a 1,000-entry, 4-KB sub-block table to
cover the first 4-MB region of a large file, and another one to
cover the last 4-MB region. These sub-block tables are only
created when those regions are being updated. The locations
of these sub-block tables are further tracked by another (root)
block table, as depicted in Figure 6 (at the bottom).

Given a 2-level block table, to access a region (e.g., 4 MB)
of a file (at most) two extra reads are involved: one fetches
the root block table and another fetches a (second-level) sub-
block table. Note that, the root block table is shared by all
second-level sub-block tables and thus usually cached in the
first place. Hence, the overhead to access one region only
involves a one-time disk read (of the second-level sub-block
table). To summarize, with the space-optimized design, a
large overlay file can still save storage space with a small log-
ical block size at the cost of maintaining a relatively complex
multi-level block table. As a multi-level block table breaks
one large block table into multiple sub-block tables, BAOVER-
LAY can efficiently cache them when their regions are being
accessed, making the amortized cost of accesses low.

5 IMPLEMENTATION

We have implemented BAOVERLAY upon Linux’s overlay file
system (in kernel 5.3) with the focus on the implementa-
tion of the presented features: ~700 lines of code (LOC) for
enabling block accessibility and CaW, and ~1,200 LOC for
supporting BCoW.

BAOVERLAY Inode: As stated in Section 4.1, the key to
interpose an overlay file system upon backing file systems
is a clearly-defined interface - e.g., the inode in POSIX-
compatible file systems. Following the same path, we devel-
oped a BAOVERLAY inode for interposition.

One main data structure that enables block accessibility
in BAOVERLAY is a simple bitmap. BAOVERLAY uses 2 bits to
represent the three states of one logical block in an overlay
file: (i) in the lower-layer file, (ii) in the upper-layer file,
and (iii) in the in-transit state. The bitmap is part of the
BAOVERLAY’s in-memory inode (i.e., a pointer array), and its
memory space is allocated in a “region by region” manner
(4 MB per region) for memory efficiency — only there is
an access to a new region of the overlay file, that region’s

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

bitmap is allocated. This is especially useful for a large file,
which needs a large memory space for the bitmap. Once
all bits in a region’s bitmap (i.e., a region) are flipped to 1,
indicating all blocks moved to the upper layer, the region’s
bitmap can be freed. Further, to eliminate inconsistencies
due to a sudden system crash, BAOVERLAY enables a “write-
back” journaling mode for storing bitmap changes in a log
file. More specifically, BAOVERLAY associates the bitmap to
a log file — every time there is an update to the bitmap, it
will be written to the log file. The log file is protected by the
backing file system’s journaling mechanism - e.g., writeback,
ordered, and data in Linux Ext4, and BAOVERLAY chose the
default “writeback” journaling mode.

When it comes to a BCoW file, an in-memory block table is
associated with the BAOVERLAY inode. The in-memory block
table is populated from the on-disk block table — part of the
BCoW file. BAOVERLAY stores the single-level block table (or
the root block table) in the first 4 KB of the BCoW file. The
single-level (or root) block table is loaded/cached to memory
when the BCoW file is open for the first time. For a multi-level
block table, the sub-block tables’ locations are indicated by
the root block table, and one sub-block table is created/loaded
only when its mapped region is being accessed for storage
efficiency. BAOVERLAY currently supports at most 2-level
block table in favor of fast I/O accesses.

Copy-after-Write: To enable CaW, BAOVERLAY needs to
add logic in overlay open, read, and write functions.

In the open function, if the “write-mode” flag is specified
and the target file resides in the lower layer, BAOVERLAY
creates an “empty” sketchy file (and all the directories along
its path if they do not exist) in the upper layer. Yet, the copy-
up is not conducted. Meanwhile, the BAOVERLAY inode is
created with the in-memory bitmap (or block table if BCoW
is supported) initialized. The inode is cached in the memory
(e.g., dCache in Linux) to accelerate future file accesses.

In the write function, BAOVERLAY converts an original
write request to a sequence of block-based small writes. For
each partial-block write to a block for the first time, BAOVER-
LAY generates a copy-up task (i.e., by marking unmodified
portions that need to be copied) and places it in a copy-
up work queue (implemented using a hash table). Right af-
ter this, BAOVERLAY invokes the underlying file system’s
write function to perform the original write and returns.
The copy-up work queue is processed, asynchronously, by a
designated kernel thread (one kernel thread for each mount
point). BAOVERLAY simply schedules the kernel thread when
a CPU is available, though we note other strategies, such as
invoking the kernel thread when the disk is not busy.

Similarly, in the read function, BAOVERLAY converts each
read request to a sequence of block-based small reads. Then,
for each read, it locates the actual data block by looking up

SoCC ’20, October 19-21, 2020, Virtual Event, USA

the bitmap (or block table) and invokes the underlying file
system’s read function to read the data. If a block’s state
is in-transit, BAOVERLAY accelerates its copy-up task(s) by
directly fetching and completing such tasks from the copy-up
work queue. Note that, if the bitmap has not been allocated
(i.e., NULL), all data stay in the lower-layer file; if the bitmap
has been freed (specified by a magic number), all data reside
in the upper-layer file. It means that, when a file is not under
CaW, the read performance is the same as the native.

File System Integration: As an overlay file-system ap-
proach, BAOVERLAY does not alter any semantic level activi-
ties of underlying file systems and is readily to run upon a
variety of existing backing file systems. We have integrated
and thoroughly tested BAOVERLAY with Linux Ext4.

6 EVALUATION

We present our comprehensive evaluation results to demon-
strate the benefits and costs of BAOVERLAY with micro-
benchmarks, stress testing, and real-world applications.

Evaluation Setup: Same as Section 2.2, our testbed con-
sisted of a physical machine equipped with a 10-core CPU
(E5-2630 v4 @ 2.20 GHz), 64 GB of RAM, and a 500-GB
NVMe SSD (Samsung 970 EVO) as the backing store. We
used Docker container [24] of version 19.03 on Linux ker-
nel 5.3 and Linux Ext4 as the underlying backing file sys-
tem. We evaluated BAOVERLAY mainly with two container
storage techniques: Docker container’s default overlay file-
system solution, Overlay2 [15] and a CoW-featured file sys-
tem, Btrfs [46]. We also included AUFS [19] (the previous
default overlay solution in Docker) for comparison in micro-
benchmarks cases. In addition, we compared BAOVERLAY
with the native case (i.e., running applications directly on
Linux Ext4 without containers) to demonstrate possible over-
head caused by the overlay approach.

6.1 Micro-benchmark

To evaluate the effectiveness of BAOVERLAY from different
angles, we first use our own micro-benchmark tools. In partic-
ular, we tested BAOVERLAY in four separate cases, including
write-once, write-many, impact-on-reads, and overhead of
BCoW. For the first three cases, we focused on the perfor-
mance benefit and overhead of BAOVERLAY and configured
BAOVERLAY to use “bitmap” to track file update information.
For the fourth case, we aimed to understand the possible
overhead of the BCoW files. Hence, we configured BAOVER-
LAY to be space-optimized (with a 2-level block table).

Write-once Case: Let us re-visit the motivational write-
once case in Section 2.2 — a containerized application accesses
a container file of different sizes via three consecutive opera-
tions: (1) open the file, (2) write a byte, and (3) close the file.
We have added the performance data (i.e., the completion

SoCC 20, October 19-21, 2020, Virtual Event, USA

16,000 "
[0 BAOverlay S
— 0 AUFS =
Z12,0000 [Overlay2 _}
o O Btrfs
£ W zFs _
§ 8,000 - g
= X
2 o e =
g 2 = 5 8
3 a “ i
S 4,000 .
La) x N3 aQ E <A 2
25| =8 28| 38 &7 | 0 28 e B gl s 2] a2
0l= - i ™ = Y | o] —E
BESEE BRNEE BRSO FESER FESED SReER
5os@mN To£aN 25aN To2£aN 25N 5o£aN
g<2 g2 &2 &g<2 g<2 5
< O < O < O < O < © < O
m m m m m m
1K 16K 64K 256K M 4M

Figure 7: Performance comparisons in the write-once
case: Irrespective of the size of the files, the comple-
tion time under BAOVERLAY remains constant and
much smaller than Overlay2 and AUFS.

time taken by the three operations in total) under BAOVER-
LAY in Figure 7. We observe that, irrespective of the size of
the files, the completion time under BAOVERLAY remains
constant (and small) — around 170 ~ 180 ps. In contrast, un-
der Overlay2, it takes 3,595 us for a 1-KB file (20x slower),
while 11,944 ps for a 4-MB file (70x slower). Though AUFS
seems lightweight in comparison with Overlay2 in the write-
once case, its performance is worse than BAOVERLAY- it
takes 225 us for a 1-KB file (2x slower), while 4,007 us for a 4-
MB file (20x slower). The performance benefit is brought by
BAOVERLAY’s block-accessibility attribute and CaW mecha-
nism - (1) due to block-accessibility, BAOVERLAY only copies
the blocks being updated (i.e., the first 4-KB block) instead
of the whole file; (2) due to CaW, the copy operation is fur-
ther deferred to an asynchronous background process. In
addition, we observe that, BAOVERLAY achieves very close
or even better performance - in terms of low write latency —
compared with CoW-featured file systems, like ZFS and Btrfs
(e.g., under 4 MB). Note that the advantage of BAOVERLAY
is that it is compatible with existing backing file systems,
while the CoW-featured file systems are not.

While the write latency under BAOVERLAY is significantly
reduced compared to Overlay2 and AUFS, it remains longer
than the native case (180 ps vs. 27 pus). It is because BAOVER-
LAY interposes its overlay inode upon backing file systems’
inodes and spends more time populating the overlay inode.
As we will see shortly in the write-many test case, this is
just a one-time overhead.

Write-many Case: In this case, a containerized application
sequentially writes a 2-GB container file (initially in the
lower layer) block by block with the 4-KB block size. For
each write, it opens the file, moves the file pointer to the

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

Total time | Ave. write | First write

Test cases
(s) lat. (us) lat. (us)

Native (w/o cache) 232.20 442.89 777
Native (w/ cache) 1.39 2.65 27.01
AUFS 9.65 17.50 1, 785, 295
Overlay2 26.20 49.98 24, 096, 098
BAOVERLAY 3.39 6.47 189.15

Table 1: Performance comparisons in the write-many
case: BAOVERLAY completes writing the 2-GB file
faster than Overlay2 and AUFS because of the copy-
after-write mechanism.

current block’s position, writes 410 bytes (~10% of 4 KB) to
the block, and closes the file.

Table 1 summarizes that, under Overlay2 (or AUFS), it
takes 26 seconds (or 9.65 seconds) to complete writing the
whole file, while under BAOVERLAY it takes only 3.39 seconds
(7.7x or 2.84x faster). This is again due to CaW — BAOVER-
LAY takes the copy operation out of CoW, and each write
simply puts data in memory (i.e., page cache) and returns.
In contrast, Overlay2 needs to copy the full 2-GB file from
the lower to the upper layer when it opens the file - that is
why the first write latency of Overlay?2 is 24 seconds (Table 1
Row 5). Again, under BAOVERLAY, we observe the similar
first write latency (~ 189 us) as that in the write-once case.
Yet, the subsequent write latency decreases dramatically —
the average write latency under BAOVERLAY is only 6.47 us
(Table 1 Row 6). The reason is that, once the overlay inode is
populated (as in the first write), it will be cached in memory
and exploited by future file operations.

Surprisingly, we observe that the native case takes a much
longer time — 232 seconds (Table 1 Row 2). Upon deeper in-
vestigation, we found that this is caused by the read-modify-
write (RMW) restriction [18] — partial writes (i.e., unaligned
with the cache page size like 4 KB) to non-cached data cause
I/0O applications to suffer from long I/O blocking time, as a
slow page read before a partial write is needed. In the write-
many case, each 410-byte write is a partial write and the file
is not cached in memory. Thus, for such a partial write, the
OS fetches the corresponding page-aligned block from the
disk to page cache (which is slow) and then applies the partial
update to the cached block. To confirm this, we cached the
full file in memory in advance (by reading the full file before
the test), and conducted the same experiment. This time, it
takes only 1.39 seconds under the native (Table 1 Row 3). In
contrast, under BAOVERLAY, the RMW restriction does not
apply, as the partial writes under BAOVERLAY target empty
blocks in a sketchy file - instead of fetching on-disk blocks,
the OS simply fills “null” in page cache.

These results clearly demonstrate that, compared with
Overlay2 (or AUFS), BAOVERLAY significantly reduces write

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

Total time | Ave. write lat. | Ave. read lat.

Test cases

(s) (ps) (ps)
Native 234.81 447.18 3.4
(unlimited cache)
N.atl.ve 259.27 446.76 238.76
(limited cache)
AUF.S . 10.46 18.25 5.4
(unlimited cache)
A.UF.S 17.71 17.50 77.25
(limited cache)
Overlay2 25.93 48.77 3.4
(unlimited cache)
Overlay2 5130 48.75 245.53
(limited cache)
BAOVERLAY 50.26 6.53 446.62
(a worst case)
BAOVE].RLAY 3.76 6.49 3.4
(a practical case)

Table 2: Performance impact on reads: In a worst case
scenario, BAOVERLAY does incur longer read latency,
which can be mitigated when the CaW completes in a
timely manner.

latency. BAOVERLAY may even outperform the native case
under some circumstances (e.g., partial writes).

Impact on Reads: As stated in Section 4.2, BAOVERLAY
may change the behavior of the reads that access in-transit
blocks, due to CaW. To measure the impact of BAOVERLAY
on such reads, we performed a worst-case scenario evalua-
tion: We used the write-many case setup to first sequentially
write a 2-GB lower-layer file. Afterward, 20% of these blocks
were read (randomly picked) - to simulate a real read-after-
write scenario [36]. In the worst-case scenario, we configured
BAOVERLAY to defer CaW infinitely, which means, for each
read, BAOVERLAY triggered a long I/O path: (1) completed
the CaW; (2) read the full block; and (3) returned.

Table 2 shows that, as expected, for such reads accessing
in-transit blocks, BAOVERLAY spends a longer time (~ 446.62
ps in Row 8) due to the longer I/O path. In contrast, the read
latency under Overlay2, AUFS, and the native is very low
(3.4 ps for Overlay2 and the native in Row 6 & 2, and 5.4 us
for AUFS in Row 4). It is due to the fact that, in all these cases,
after finishing writing the whole file, the file is cached in
memory — the following read operations fetch data directly
from memory instead of slow disk. However, the cost to
enjoy such fast reads is that Overlay2 blocks a containerized
application for 24 seconds as a result of CoW. In addition, if
the container has limited memory (less than 2-GB) or the file
size is too big to fit in the memory cache, the read latency
under both native and Overlay2/AUFS increases to more
than 77 ps (Row 5). Even with high read latency, BAOVERLAY

SoCC ’20, October 19-21, 2020, Virtual Event, USA

Test cases [Ave. write lat. (us) [Total time (s)
Native (with cache) 2.66 1.39
AUFS 17.50 9.65
Overlay2 49.98 26.20
BAOVERLAY (Case 1) 5.75 3.01
BAOVERLAY (Case 2) 3.74 1.97

Table 3: Overhead analysis of BCoW: BAOVERLAY in-
curs slight overhead in populating block tables (under
Case 1), while little (or no) overhead when the blocks
tables are established (under Case 2).

achieves the same total completion time as Overlay2 (~ 50
seconds) and continuously outperforms the native case.

This demonstrates a worst case scenario. In a more prac-
tical setting — BAOVERLAY has sufficient time to complete
CaW (i.e., a write is not immediately followed by a read to
the same block) - BAOVERLAY can also return reads quickly
(3.4 ps in Table 2, Row 9).

Overhead of BCoW: Section 4.3 presents that to support
BCoW, a block table is involved. As BAOVERLAY’s imple-
mentation supports at most a 2-level block table for fast
I/O accesses, we measured the overhead of BCoW by ac-
cessing a 2-GB BCoW-formatted file with a configuration
of a 2-level block table and 4-KB block size. We, particu-
larly, focused on two representative cases: (1) to create a
BCoW-formatted (sketchy) file during CaW; and (2) to access
a BCoW-formatted file that has been in the upper layer.
Table 3 shows that, under both cases, BAOVERLAY leads
to low write latency (5.75 ps and 3.74 ps respectively in Row
5 & 6) — it is close to the native case (2.66 y in Row 2) and
much better than Overlay2 and AUFS (49.98 y and 17.5 p in
Row 4 & 3). Noticeably, BAOVERLAY achieves lower write
latency in Case 2 in contrast to Case 1, because under Case
2, the multi-level block tables are established and stored in
the BCoW file and BAOVERLAY only needs to read it (rather
than populate it from scratch as in Case 1) - the cost of a
sub-block table read is further amortized over multiple block
writes (i.e., 1000). We further observed that the size of the
BCoW-formatted file under Case 1, grew as the experiment
advanced (i.e., efficient use of storage space due to BCoW).

6.2 Stress-testing

To further stress test BAOVERLAY, we used a public micro-
benchmark tool, Fio [4]. Specifically, a 40-GB file was cre-
ated and stored in the Fio’s container image. We focused
on four typical I/Os: sequential/random writes and sequen-
tial/random reads. One thread of the containerized Fio gener-
ated I/O requests of the four types to the lower-layer 40-GB
file, with the I/O depth being one and the I/O sizes ranging
from 4 KB to 1024 KB. We configured BAOVERLAY to use

SoCC 20, October 19-21, 2020, Virtual Event, USA

200 [Native O BAOverlay ,;}1,200 B Native
= [0 Overlay2 @ Btrfs e @ BAOverlay
T 150 142 141 £ 900 O Overlay2
£ = 669 O Btrfs
= 100 -2 600
=} [5)
£ g
= 50 £ 300
£ o} 144146 143 141
9
S 2 oloBl pafs w3
£ 2EUE 2E0E 2EUE Z 2zui 250% o4
g3 g3 °s = g3 23 g3
) o S = o =
4K 64K 1024K 4K 64K 1024K

(a) Sequential write. (b) Random write.

Figure 8: Performance comparisons under four typical I/O types among the native,
Btrfs: BAOVERLAY generally outperforms Overlay2 and is very close to the native in

. 24]W Native [0 BAOverlay :\j 32/ Native [0 BAOverlay
s [0 Overlay2 @ Btrfs 5| £ [Overlay2 & Btrfs
18 / 2 24 2
g K
g 2 12 £ 18
2 2 =
S 12{i2 ,u o 1o ! = 16
= =) 10 11 12 12 11 1212 11
= 9

2 6 o g

o P

o0 <

ER S0

o PEYE 2RSE 2 RYE § SEOE 2E29E 229 E

= ET 8§E ET- ®E ET EE ET ®8E ETRE ET EE

= SETS 283 A 58390 % SEFA SEg A S8EA
3 2 3z 32 g 3z Sz 3z
< © <O < O & x O el el
S o o] S =
4K 64K 1024K 4K 64K 1024K

(a) Sequential write. (b) Random write.

Read Completion time (s)

Read Avg CPU utilization (%)

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

32|l Native O BAOverlay ,;\1,200 B Native
O Overlay2 [Btrfs = O BAOverlay
24 g 9001303851843 O Overlay2
9 =
R 717 19,18 z O Btrfs
16 15 15| .2 600
3
)
8 8 300 221214215282
< Hﬂ 66 66 66 74
0 g 0 S
2ESE 2EYE 2EYE B EESE 2ESE EEGE
8@ E8EMA 88=@ § S 56+m E5+M@M 5 5TM
Zz 2B Z = B Zz 2 B S Z =z B Z = B Z =z &
S 2 82 Sz Sz 82 S 2
< O < © Z O z o z o =z o
I~) P~} =) =
4K 64K 1024K 4K 64K 1024K
(c) Sequential read. (d) Rand read.

BAOVERLAY, Overlay2 and

most cases.

167 Native B BAOverlay s 12 Bl Native [0 BAOverlay
[0 Overlay2 [Btrfs g O Overlay2 [Btrfs
12 s 9
10 10 10 =
N 6 7
= 66 66 66 6 6 6
817 7 7 77 6 777 5 6 = e
= o]
¥
4 O 3
2
0 o0
S522 5§58 5528 & S22 5522 5§52 @
Z > O Z z © Z > O = Z > O Z z © Z > O
Sz Sz Sz g Sz Sz Sz
< © < © < © & < © < © < ©
o o o o o o
4K 64K 1024K 4K 64K 1024K

(c) Sequential read.

(d) Rand read.

Figure 9: Comparisons of average CPU utilization among the native, BAOVERLAY, Overlay2 and Btrfs: the CPU
utilization under BAOVERLAY is almost the same as those under the native and Overlay2.

“bitmap” to track file update information and compared it
with Overlay2, Btrfs, and the native.

Figure 8 presents the completion time under each case.
Under the sequential and random write cases, BAOVERLAY
outperforms Overlay2 significantly - BAOVERLAY takes 54
seconds to complete the sequential write under the 4-KB I/O
size, while Overlay2 takes 142 seconds (2.62x slower). The
performance gap widens with larger I/O size — under the
same sequential write with the 1024-KB I/O size, BAOVER-
LAY takes 36 seconds to complete, while Overlay?2 takes 135
seconds (3.75x slower). It is because, with the I/O sizes being
aligned with the block size (i.e., 4 KB), BAOVERLAY does not
involve any copy-up; instead, it simply writes data to the
upper sketchy file. This also explains the close performance
between BAOVERLAY and the native under all cases — includ-
ing the read cases, indicating that BAOVERLAY incurs little
overhead to non-CaW reads.

Figure 9 presents the average CPU utilization over the full
run under each test case. We find that the CPU utilization un-
der BAOVERLAY is almost the same as those under the native
and Overlay2. Btrfs consumes much more CPU than others
while achieving similar or even worse I/O performance (for
random write in Figure 9b). It is because, in Btrfs, a single
update alters many on-disk structures causing significant
overhead. In addition, the performance of random writes

2,000 Ml Native 20 @ Native BAOverlay

[BAOverlay Overlay2 Btrfs
[Overlay2 1479 | =~

Z15001E Bufs Y 15

2 z

£ 2

_gl,ooo 967 3 .

2 El M i

= 5 v.p@ i \ |\wv »wmcg

§ 500 I 8 4 w il

0 0

1 200 400 600 . 800 1000 1200 1478

Time (s)

(b) CPU% over time.

\NC e(\a‘!e(\a‘ﬁ lauis

(a) Performance.

Figure 10: Performance and CPU utilization under
partial-block writes: BAOVERLAY results in less com-
pletion time than Overlay2 while slight longer time
than the native due to CaW.

under Btrfs varies a lot, as plotted in Figure 9b. These test
cases do not involve CaW, as all I/O sizes are aligned with
the block size (i.e., 4 KB). It shows that equipped with block
accessibility, BAOVERLAY avoids unnecessary data copy-ups.

To evaluate CaW under Fio, we used Fio to write the same
40-GB file with I/O requests accessing 4-KB blocks sequen-
tially, but leaving a 3-KB hole for each access (i.e., partial-
block writes). Thus, BAOVERLAY needs to create a copy-up
task for each write. Under this condition, compared with
Overlay2, BAOVERLAY leads to less completion time (1,092

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage

74,000 Il Native 8,000 ® Native BAOverlay
[BAOverlay Overlay2 Btrfs
5118 [Overlay2
55,500 O Btrfs E 6,000
2 46114 54 y
g 2 \
2 = m
37,000 £ 4,000/
8 3
S 5
=
18,500- < 2,000
0. 0

‘*““"\gw B v puts 1 50 150 200

100
Time (s)

(a) Total events. (b) Number of served queries over time.

Figure 11: Performance comparisons of Sysbench on
MySQL: BAOVERLAY achieves higher throughput in
terms of total events compared to Overlay2.

400TH Native 52 ® Native BAOverlay
[BAOverlay ' Overlay2 Btrfs
[Overlay2 208 -
2 3001@ Bufs £ 39
e 249 236 = ‘
£ 230 g |
£ 200 8 2 ‘
2 = |l
<.) A i A
£ | J AL N\ [
S 100 513 “\ MA.«UL.(J?V%N’L,* Y ¥ B
r
0 0
“ﬁm\j»ow‘gzd\wwﬁs 1 50 100 050 200 250 300
(a) Completion time. (b) CPU% over time.

Figure 12: Performance comparisons of YCSB on Mon-
goDB: BAOVERLAY completes 1-million updates faster
than Overlay2 with stable CPU consumption.

seconds vs. 1,208 seconds in Figure 10a), with slightly higher
CPU usage (e.g., 2%~5% more CPU usage in Figure 10b).
Again, Btrfs performs poorly among all.

6.3 Application Workloads

We used realistic workloads to test BAOVERLAY, including
Sysbench [30] and YCSB [11]. We configured BAOVERLAY to
use “bitmap” to track file update information and compared
it with Overlay2, Btrfs, and the native.

Sysbench (MySQL): Sysbench is an OLTP application bench-
mark running upon a transactional database. We chose MySQL
(version 5.5) with its default storage engine, INNODB, and
installed it — consisting of 24 tables, each with 4 million items
- in a container image. We ran 16 Sysbench threads remotely
in a client for 300 seconds in each run, which generated a
mix of queries (e.g, select, insert, and update) to MySQL.
Figure 11a shows that the throughput of MySQL, in terms
of total events over the 300-second testing period, increases
by 100% under BAOVERLAY, compared to Overlay2. The rea-
son is that, with CaW, BAOVERLAY avoids long blocking time
caused by CoW and can keep servicing clients (Sysbench)
through the whole run, as illustrated in Figure 11b. In con-
trast, Overlay2 frequently copies up a full MySQL data store

SoCC ’20, October 19-21, 2020, Virtual Event, USA

file, which blocks a specific Sysbench thread for a long time,
resulting in lower overall performance. In addition, Btrfs
continues to lead to worst performance.

YCSB (MongoDB): Yahoo Cloud Serving Benchmark (YCSB)
is an industry-standard performance benchmark for NoSQL
databases. We ran YCSB against a popular document-oriented
NoSQL - MongoDB (version 3.0.10). We simply deployed the
MongoDB in a container image with a 20-GB data store. We
selected “UPDATE” of YCSB as the core workload. For each
run, the workload inserted 1 million 1-KB records.

Figure 12a shows that BAOVERLAY improves the “INSERT”
throughput of MongoDB slightly by 3%, compared to Over-
lay2. Under the YCSB case, we observe that Overlay?2 stalls
the client (YCSB) in the beginning of each run: When the
MongoDB database starts, it opens its data store with a write-
mode flag, wherein Overlay2 copies up the whole 20-GB data
store, which takes around 14 seconds. This is further con-
firmed in Figure 12b, which displays the CPU% over time.
BAOvVERLAY consumes more CPU resources during Mon-
goDB’s startup, due to starting serving requests. In contrast,
the CPU utilization under Overlay2 keeps stable in the be-
ginning, partly attributed to the copy-up operation.

Discussions: Compared to other overlay file systems (e.g.,
Overlay2 and AUFS), BAOVERLAY significantly reduces the
first write latency with both block-accessibility and the CaW
mechanism. Yet, it still falls behind the native case (170 us
vs. 22 ps) as BAOVERLAY takes non-negligible time to pop-
ulate the overlay inode leading to increased latency. New
mechanisms are further needed to either mitigate or hide
such high first write latency, especially in a serverless com-
puting scenario where fast container startup time is much
necessary [1, 23, 49]. Besides, BAOvERLAY’S BCoW works at
a per-instance granularity. To make container storage space
more efficient, a BCoW file might need to be further shared
by multiple containers, given the fact that a physical host
can support hundreds/thousands of containers.

7 CONCLUSIONS

We have presented BAOVERLAY, a lightweight, block-accessible
container overlay file system. Equipped with block accessi-
bility, BAOVERLAY enables a non-blocking copy-after-write
mechanism for accelerated file updates and a new file format
for the efficient use of container storage space. Our exten-
sive evaluation with both micro-benchmarks and real-world
applications demonstrates the effectiveness and general ap-
plicability of BAOVERLAY.

8 ACKNOWLEDGMENTS

We thank our shepherd, Mahesh Balakrishnan, and the anony-
mous reviewers for their insightful comments. This work
was supported in part by NSF under Award 1909877.

SoCC 20, October 19-21, 2020, Virtual Event, USA

REFERENCES

(1]

(4]
(5]

(6]

(7]
(8]

(10]

[11

—

[12

—

(13]

(14]
(15]
(16]

(17]

Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). 419-434.

David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A fast array
of wimpy nodes. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. 1-14.

AWS. 2020. AWS Lambda: Run code without thinking about servers.
Pay only for the compute time you consume. https://aws.amazon.com/
lambda/.

Jens Axboe. 2020. fio(1) - Linux man page. https://hub.docker.com/.
Jon CR Bennett and Hui Zhang. 1996. WEF/sup 2/Q: worst-case fair
weighted fair queueing. In INFOCOM’96. Fifteenth Annual Joint Con-
ference of the IEEE Computer Societies. Networking the Next Generation.
Proceedings IEEE.

Jon CR Bennett and Hui Zhang. 1997. Hierarchical packet fair queueing
algorithms. IEEE/ACM Transactions on Networking (TON) 5, 5 (1997),
675-689.

David Bernstein. 2014. Containers and cloud: From Ixc to docker to
kubernetes. IEEE Cloud Computing 1, 3 (2014), 81-84.

Anton Burtsev, Kiran Srinivasan, Prashanth Radhakrishnan, Kalad-
har Voruganti, and Garth R Goodson. 2009. Fido: Fast Inter-Virtual-
Machine Communication for Enterprise Appliances.. In USENIX An-
nual technical conference.

Google Cloud. 2020. Containers at Google. https://cloud.google.com/
containers/.

Kata Containers community. 2020. The speed of containers, the secu-
rity of VMs. https://katacontainers.io/.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143-154.

Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-
aware scheduling for heterogeneous datacenters. In ACM SIGPLAN
Notices, Vol. 48. 77-88.

Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and
simulation of a fair queueing algorithm. In ACM SIGCOMM Computer
Communication Review, Vol. 19. 1-12.

Docker Docs. 2020. About storage drivers. https://docs.docker.com/
storage/storagedriver/.

Docker Docs. 2020. Use the OverlayFS storage driver.
//docs.docker.com/storage/storagedriver/overlayfs-driver/.
Docker Docs. 2020. Use volumes. https://docs.docker.com/storage/
volumes/.

VMWare Docs. 2020. Single Root I/O Virtualization (SR-
I0V). https://docs.vmware.com/en/VMware-vSphere/7.0/
com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-
444D-BCBE-618E0D836B9F.html.

Garth Gibson and Greg Ganger. 2011. Principles of operation for
shingled disk devices. (2011).

GitHub. 2020. Aufs5. https://github.com/sfjro/aufs5-linux.

Mel Gorman. 2004. Understanding the Linux virtual memory manager.
Prentice Hall Upper Saddle River.

Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. 2009. PARDA: Pro-
portional Allocation of Resources for Distributed Storage Access.. In
Proceedings of the USENIX Conference on File and Storage Technologies.
Ajay Gulati, Arif Merchant, and Peter J. Varman. 2007. pClock: an
arrival curve based approach for QoS guarantees in shared storage

https:

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Yu Sun, Jiaxin Lei, Seunghee Shin, Hui Lu

systems. In SSIGMETRICS. ACM.

Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. 2016. Slacker: Fast distribution with
lazy docker containers. In 14th USENLX Conference on File and Storage
Technologies (FAST 16).

Docker Inc. 2020. Get Started with Docker. https://www.docker.com.
William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif
Walsh, et al. 2015. BetrFS: A right-optimized write-optimized file
system. In 13th USENIX Conference on File and Storage Technologies
(FAST 15). 301-315.

Weli Jin, Jeffrey S Chase, and Jasleen Kaur. 2004. Interposed propor-
tional sharing for a storage service utility. ACM SIGMETRICS Perfor-
mance Evaluation Review 32, 1 (2004), 37-48.

Meaza Taye Kebede. 2012. Performance comparison of btrfs and ext4
filesystems. Master’s thesis.

Terence Kelly, Ira Cohen, Moises Goldszmidt, and Kimberly Keeton.
2004. Inducing models of black-box storage arrays. HP Laboratories,
Palo Alto, CA, Technical Report HPL-2004-108 (2004).

Linux Kernel. 2020. CFQ. https://www .kernel.org/doc/
Documentation/block/cfq-iosched.txt.

Alexey Kopytov. 2004. SysBench manual. (2004).

Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam.
2017. High Performance Metadata Integrity Protection in the {WAFL}
Copy-on-Write File System. In 15th USENIX Conference on File and
Storage Technologies (FAST 17). 197-212.

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. F2FS: A new file system for flash storage. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15). 273-286.

Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda.
2006. High Performance VMM-bypass I/O in Virtual Machines. In
Proceedings of the Annual Conference on USENIX *06 Annual Technical
Conference.

David Lomet and Mark Tuttle. 1999. Logical logging to extend recovery
to new domains. ACM SIGMOD Record 28, 2 (1999), 73-84.

Hui Lu, Brendan Saltaformaggio, Ramana Kompella, and Dongyan
Xu. 2015. vFair: Latency-aware Fair Storage Scheduling via per-IO
Cost-based Differentiation. In Proceedings of the 6th ACM Symposium
on Cloud Computing.

Hui Lu, Brendan Saltaformaggio, Cong Xu, Umesh Bellur, and Dongyan
Xu. 2016. Bass: Improving i/o performance for cloud block storage
via byte-addressable storage stack. In Proceedings of the Seventh ACM
Symposium on Cloud Computing.

Garrett McGrath and Paul R Brenner. 2017. Serverless computing: De-
sign, implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 405-410.

Athicha Muthitacharoen, Robert Morris, Thomer M Gil, and Benjie
Chen. 2002. Ivy: A read/write peer-to-peer file system. ACM SIGOPS
Operating Systems Review 36, SI (2002), 31-44.

Jun Nakajima. 2007. Intel virtualization technology roadmap and
VT-d support in Xen. http://www-archive.xenproject.org/files/
xensummit_4/VT_roadmap_d_Nakajima.pdf. (2007).

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds:
Managing performance interference effects for qos-aware clouds. In
Proceedings of the 5th European Conference on Computer Systems.
Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid task provisioning with serverless-optimized containers. In 2018
USENIX Annual Technical Conference (USENIX ATC 18). 57-70.
Junjiro R. Okajima. 2020. Linux AuFS Examples: Another Union File
System Tutorial. http://aufs.sourceforge.net/aufs2/.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://hub.docker.com/
https://cloud.google.com/containers/
https://cloud.google.com/containers/
https://katacontainers.io/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-CC021803-30EA-444D-BCBE-618E0D836B9F.html
https://github.com/sfjro/aufs5-linux
https://www.docker.com
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
http://www-archive.xenproject.org/files/xensummit_4/VT_roadmap_d_Nakajima.pdf
http://www-archive.xenproject.org/files/xensummit_4/VT_roadmap_d_Nakajima.pdf
http://aufs.sourceforge.net/aufs2/

BAOVERLAY: A Block-Accessible Overlay File System for Fast and Efficient Container Storage SoCC ’20, October 19-21, 2020, Virtual Event, USA

[43] Openzfs. 2020. zfs-0.8.3. https://github.com/openzfs/zfs/releases.
[44] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor

[61] Shuanglong Zhang, Helen Catanese, and Andy An-I Wang. 2016. The
composite-file file system: Decoupling the one-to-one mapping of files

[

sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM transactions on networking 1, 3 (1993),
344-357.

Abhishek Prakash. 2020. Don’t Use ZFS on Linux. https://itsfoss.com/
linus-torvalds-zfs/.

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux
B-tree filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1-32.

Yannis Sfakianakis, Stelios Mavridis, Anastasios Papagiannis, Spyridon
Papageorgiou, Markos Fountoulakis, Manolis Marazakis, and Angelos
Bilas. 2014. Vanguard: Increasing Server Efficiency via Workload
Isolation in the Storage I/O Path. In Proceedings of the ACM Symposium

and metadata for better performance. In 14th USENIX Conference on
File and Storage Technologies (FAST 16). 15-22.

Xiaolan Zhang, Suzanne McIntosh, Pankaj Rohatgi, and John Linwood
Griffin. 2007. XenSocket: A High-throughput Interdomain Transport
for Virtual Machines. In Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware.

Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rup-
precht, Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and
Ali R Butt. 2019. Large-Scale Analysis of the Docker Hub Dataset. In
2019 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 1-10.

on Cloud Computing.

Amit Shah, Allen M. Kay, Muli Ben-Yehuda, and Ben-Ami Yassour.
2008. PCI Device Passthrough for KVM. https://www.linux-kvm.org/
images/d/d0/KvmForum2008%24kdf2008_14.pdf. (2008).

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENLX ATC 20). USENIX Association, 419-433.
https://www.usenix.org/conference/atc20/presentation/shillaker
David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Perfor-
mance Isolation and Fairness for Multi-Tenant Cloud Storage. In Pro-
ceedings of the 10th USENIX Symposium on Operating Systems Design
and Implementation.

Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis, Wenji Li, Raju
Rangaswami, and Ming Zhao. 2019. Evaluating Docker storage per-
formance: from workloads to graph drivers. Cluster Computing 22, 4
(2019), 1159-1172.

Steven J. Vaughan-Nichols. 2020. Docker makes ready-to-run container
apps available. https://www.zdnet.com/article/docker-makes-ready-
to-run-container-apps-available/.

Zhikun Wang, Dan Feng, Ke Zhou, and Fang Wang. 2008. PCOW:
Pipelining-based COW snapshot method to decrease first write penalty.
In International Conference on Grid and Pervasive Computing. Springer,
266-274.

Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian
Mueller, Jason Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Per-
formance of the Panasas Parallel File System.. In Proceedings of the
USENIX Conference on File and Storage Technologies.

Charles P. Wright and Erez Zadok. 2004. Kernel Korner: Unionfs:
Bringing Filesystems Together. Linux J. 2004, 128 (Dec. 2004), 8.
Cong Xu, Sahan Gamage, Hui Lu, Ramana Rao Kompella, and Dongyan
Xu. 2013. vTurbo: Accelerating Virtual Machine I/O Processing Using
Designated Turbo-Sliced Core.. In USENIX Annual Technical Confer-
ence.

Ethan G Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2019. The true cost of con-
taining: A gVisor case study. In 11th USENLX Workshop on Hot Topics
in Cloud Computing (HotCloud 19).

[58] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Aksh-
intala, Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh,
Michael Bender, et al. 2016. Optimizing every operation in a write-
optimized file system. In 14th USENIX Conference on File and Storage
Technologies (FAST 16). 1-14.

Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, and
Charles P Wright. 2006. On incremental file system development.
ACM Transactions on Storage (TOS) 2, 2 (2006), 161-196.

Lixia Zhang. 1991. VirtualClock: a new traffic control algorithm for
packet-switched networks. ACM Transactions on Computer Systems
(TOCS) 9, 2 (1991), 101-124.

[48

—

[49

[

(50

=

[51

—

[52

=

[53

=

[54

=

[55

=

(56

=

[57

—

[59

—

[60

=

https://github.com/openzfs/zfs/releases
https://itsfoss.com/linus-torvalds-zfs/
https://itsfoss.com/linus-torvalds-zfs/
https://www.linux-kvm.org/images/d/d0/KvmForum2008%24kdf2008_14.pdf
https://www.linux-kvm.org/images/d/d0/KvmForum2008%24kdf2008_14.pdf
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.zdnet.com/article/docker-makes-ready-to-run-container-apps-available/
https://www.zdnet.com/article/docker-makes-ready-to-run-container-apps-available/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Container Storage
	2.2 Overlay Overhead Illustration

	3 Related Work
	4 Design of BAOverlay
	4.1 Enabling Block Accessibility
	4.2 Taking ``C'' out of ``CoW''
	4.3 Storing Overlay Files Efficiently

	5 Implementation
	6 Evaluation
	6.1 Micro-benchmark
	6.2 Stress-testing
	6.3 Application Workloads

	7 Conclusions
	8 Acknowledgments
	References

